-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseplate_isometry.py
98 lines (76 loc) · 2.41 KB
/
baseplate_isometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from firedrake import *
Ly = 1.0
Lx = 1.0
nw = 40
nl = 40
mesh = RectangleMesh(nl, nw, Lx, Ly)
X0 = mesh.coordinates
V = VectorFunctionSpace(mesh, "CG", degree=1, dim=3)
X03D = Function(V).interpolate(as_vector([X0[0],X0[1],0.]))
deg = 2
mesh = Mesh(X03D)
X0 = mesh.coordinates
V = VectorFunctionSpace(mesh, "CG", deg, dim=3)
Q = TensorFunctionSpace(mesh, "DG", deg-2, shape=(2,2))
Dt = 1.0e-5
dt = Constant(Dt)
theta= Constant(pi/4)
s = X0[0]/Lx
X_bc0 = as_vector([s*Lx*cos(theta),
X0[1],
s*Lx*sin(theta)])
X_bc1 = as_vector([s*Lx*cos(theta),
X0[1],0.])
X_bc = Function(V)
tval = Constant(0.)
t0 = 0.25
W = MixedFunctionSpace((V,Q))
w = Function(W)
Xnp, P = w.split()
Xn = Function(V).interpolate(X_bc0)
Xnp.assign(Xn)
Xnp, P = split(w)
eta, Sig = TestFunctions(W)
def grad2D(Z):
return as_tensor([[Z[0].dx(0), Z[0].dx(1)],
[Z[1].dx(0), Z[1].dx(1)],
[Z[2].dx(0), Z[2].dx(1)]])
J = grad2D(Xnp)
Jdag = inv(dot(J.T, J))*J.T
Jcross = cross(Xnp.dx(0),Xnp.dx(1))
detJ = inner(Jcross,Jcross)**0.5
F = (
inner(Xnp - Xn, eta)*detJ + dt*inner(dot(Jdag.T,grad2D(Xnp).T),
dot(Jdag.T,grad2D(eta).T)*detJ)
- inner( P, dot( grad2D(Xnp).T, grad2D(eta)) +
dot( grad2D(eta).T, grad2D(Xnp)))
+ inner( dot(grad2D(Xnp).T, grad2D(Xnp)) - Identity(2), Sig)
)*dx
bcs = [DirichletBC(W.sub(0), X_bc, (1,2))]
prob = NonlinearVariationalProblem(F, w, bcs=bcs)
solver = NonlinearVariationalSolver(prob,
solver_parameters=
{'mat_type': 'aij',
'snes_converged_reason':True,
'ksp_converged_reason':True,
"snes_monitor":True,
'ksp_type': 'preonly',
'pc_factor_mat_solver_package':'mumps',
'pc_type': 'lu'})
T = 0.5
t = 0.
file = File('baseplateflow.pvd')
Xnp, P = w.split()
mesh.coordinates.interpolate(Xnp)
file.write(Xnp)
mesh.coordinates.interpolate(X0)
while t < T - Dt/2:
print(t)
t += Dt
X_bc.interpolate(X_bc0 + tval*(X_bc1-X_bc0))
tval.assign(max(t/t0, 1.0))
solver.solve()
mesh.coordinates.interpolate(Xnp)
file.write(Xnp)
mesh.coordinates.interpolate(X0)
Xn.assign(Xnp)