-
Notifications
You must be signed in to change notification settings - Fork 0
/
prompt.txt
27 lines (12 loc) · 14.9 KB
/
prompt.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Note these abstract findings:
The proposed diagnostic panel allowed simultaneous analysis of 60 variants of the CFTR gene. A total of 23 carriers of the following variants were identified among 642 participants: F508del (rs113993960) with a frequency of 2.02%, L138ins (rs397508686) and 394delTT (rs121908769) – 0.47%, CFTRdele2.3 (c.54–5940_273+10250del21080; p.S18Rfs*16) – 0.31%, R117H (rs78655421), and G542X (rs113993959) – 0.16%. The frequency of heterozygotes in the Russian population was 3.58% or 1:28 (CI95%: 2.28–5.33% by Clopper–Pearson exact method). High frequency of heterozygous CFTR variants carriers and availability of highly productive diagnostic panel for detection of CFTR variants suggest the prospect of carrier screening for some common CF variants among Russian population.
With exome/genome sequencing (ES/GS) integrated into the practice of medicine, there is some potential for reporting incidental/secondary findings (IFs/SFs). The issue of IFs/SFs has been studied extensively over the last 4 years. In order to evaluate their implications in care organisation, we retrospectively evaluated, in a cohort of 700 consecutive probands, the frequency and burden of introducing the search for variants in a maximum list of 244 medically actionable genes (genes that predispose carriers to a preventable or treatable disease in childhood/adulthood and genes for genetic counselling issues). We also focused on the 59 PharmGKB class IA/IB pharmacogenetic variants. We also compared the results in different gene lists. We identified variants (likely) affecting protein function in genes for care in 26 cases (3.7%) and heterozygous variants in genes for genetic counselling in 29 cases (3.8%). Mean time for the 700 patients was about 6.3 min/patient for medically actionable genes and 1.3 min/patient for genes for genetic counselling, and a mean time of 37 min/patients for the reinterpreted variants. These results would lead to all 700 pre-test counselling sessions being longer, to 55 post-test genetic consultations and to 27 secondary specialised medical evaluations. ES also detected 42/59 pharmacogenetic variants or combinations of variants in the majority of cases. An extremely low metabolizer status in genes relevant for neurodevelopmental disorders (CYP2C9 and CYP2C19) was found in 57/700 cases. This study provides information regarding the need to anticipate the implementation of genomic medicine, notably the work overload at various steps of the process.
More than 275 million people in the world are carriers of a heterozygous mutation of the CFTR gene, associated with cystic fibrosis, the most common autosomal recessive disease among Caucasians. Some recent studies assessed the association between carriers of CFTR variants and some pathologies, including cancer risk. The aim of this study is to analyze the landscape of germline pathogenic heterozygous CFTR variants in patients with diagnosed malignant neoplasms. For the first time in Russia, we evaluated the frequency of CFTR pathogenic variants by whole-genome sequencing in 1800 patients with cancer and compared this with frequencies of CFTR variants in the control group (1825 people) adjusted for age and 10,000 healthy individuals. In the issue, 47 out of 1800 patients (2.6%) were carriers of CFTR pathogenic genetic variants: 0.028 (42/1525) (2.8%) among breast cancer patients, 0.017 (3/181) (1.7%) among colorectal cancer patients and 0.021 (2/94) (2.1%) among ovarian cancer patients. Pathogenic CFTR variants were found in 52/1825 cases (2.85%) in the control group and 221 (2.21%) in 10,000 healthy individuals. Based on the results of the comparison, there was no significant difference in the frequency and distribution of pathogenic variants of the CFTR gene, which is probably due to the study limitations. Obviously, additional studies are needed to assess the clinical significance of the heterozygous carriage of CFTR pathogenic variants in the development of various pathologies in the future, particularly cancer.
Cystic fibrosis, phenylketonuria, alpha-1 antitrypsin deficiency, and sensorineural hearing loss are among the most common autosomal recessive diseases, which require carrier screening. The evaluation of population allele frequencies (AF) of pathogenic variants in genes associated with these conditions and the choice of the best genotyping method are the necessary steps toward development and practical implementation of carrier-screening programs. We performed custom panel genotyping of 3821 unrelated participants from two Russian population representative samples and three patient groups using real-time polymerase chain reaction (PCR) and next generation sequencing (NGS). The custom panel included 115 known pathogenic variants in the CFTR, PAH, SERPINA1, and GJB2 genes. Overall, 38 variants were detected. The comparison of genotyping platforms revealed the following advantages of real-time PCR: relatively low cost, simple genotyping data analysis, and easier detection of large indels, while NGS showed better accuracy of variants identification and capability for detection of additional pathogenic variants in adjacent regions. A total of 23 variants had significant differences in estimated AF comparing with non-Finnish Europeans from gnomAD. This study provides new AF data for variants associated with the studied disorders and the comparison of genotyping methods for carrier screening.
Cystic fibrosis (CF) is a life‐limiting autosomal recessive genetic disease caused by variants in the CFTR gene, most commonly by the [F508del] variant. Although CF is a classical Mendelian disease, genetic variants in several modifier genes have been associated with variation of the clinical phenotype for pulmonary and gastrointestinal function and urogenital development. We hypothesized that whole genome sequencing of a well‐phenotyped CF populations might identify novel variants in known, or hitherto unknown, modifier genes. Whole genome sequencing was performed on the Illumina HiSeq X platform for 98 clinically diagnosed cystic fibrosis patient samples from the Adult CF Clinic at the University of California San Diego (UCSD). We compared protein‐coding, non‐silent variants genome wide between CFTR [F508del] homozygotes vs CFTR compound heterozygotes. Based on a single variant score test, we found 3 SNPs in common variants (MAF >5%) that occurred at significantly different rates between homozygous [F508del]CFTR and compound heterozygous [F508del]CFTR patients. The 3 SNPs were all located in one gene on chromosome 2: Tensin 1 (TNS1: rs3796028; rs2571445: and rs918949). We observed significantly lower BMIs in homozygous [F508del]CFTR patients who were also homozygous for Tensin 1 rs918949 (T/T) (p = 0.023) or rs2571445 (G/G) (p = 0.02) variants. The Tensin 1 gene is thus a potential modifier gene for low BMI in CF patients homozygous for the [F508del]CFTR variant.Keywords: BMI, cystic fibrosis, TNS1, whole genome sequencing
Genetic risk factors of the CP development were found in 61% of patients. Pathogenic and likely-pathogenic variants associated with the risk of CP development were identified in the following genes: CTRC (37.1% of patients), CFTR (18.1%), SPINK1 (8.6%), PRSS1 (8.6%), and CPA1 (6.7%). The frequent gene variants in Russian patients with CP were as follows: CTRC gene — c.180C>T (rs497078), c.760C>T (rs121909293), c.738_761del24 (rs746224507); cumulative odds ratio (OR) for all risk alleles was 1.848 (95% CI: 1.054–3.243); CFTR gene — c.3485G>T (rs1800120), c.1521_1523delCTT (p.Phe508del, rs113993960), and c.650A>G (rs121909046); OR=2.432 (95% CI: 1.066–5.553). In the SPINK1, PRSS1, and CPA1 genes, pathogenic variants were found only in the group of patients with CP. The frequent variants of the SPINK1 gene include c.101A>G (p.Asn34Ser, rs17107315) and c.194+2T>C (rs148954387); of the PRSS1 gene — c.86A>T (p.Asn29Ile, rs111033566); of the CPA1 gene — c.586-30C>T (rs782335525) and c.696+23_696+24delGG. The OR for the CP development for the c.180TT genotype (rs497078) CTRC according to the recessive model (TT vs. CT+CC) was 7.05 (95% CI: 0.86–263, p=0.011). In the CTRC gene, the variant c.493+49G>C (rs6679763) appeared to be benign, the c.493+51C>A (rs10803384) variant was frequently detected among both the diseased and healthy persons and did not demonstrate a protective effect. The protective factor c.571G>A (p.Gly191Arg, rs61734659) of the PRSS2 gene was detected only in the group of healthy individuals and confirmed its protective role. 12.4% of the patients with CP had risk factors in 2 or 3 genes. Conclusion: Sequencing of the coding regions of the PRSS1, SPINK1, CTRC, CFTR, and CPA1 genes allowed to identify genetic risk factors of the CP development in 61% of cases. Determining the genetic cause of CP helps to predict the disease course, perform preventive measures in the proband’s relatives, and facilitate a personalized treatment of the patient in future.Keywords: chronic pancreatitis, mutations, gene variants, PRSS1, SPINK1, CTRC, CFTR, CPA1, genetic risk factors, hereditary pancreatitis, idiopathic pancreatitis, Russian population
Cystic fibrosis (CF) is a life-shortening disease arising as a consequence of mutations within the CFTR gene. Novel therapeutics for CF are emerging that target CF transmembrane conductance regulator protein (CFTR) defects resulting from specific CFTR variants. Ivacaftor is a drug that potentiates CFTR gating function and is specifically indicated for CF patients with a particular CFTR variant, G551D-CFTR (rs75527207). Here, we provide therapeutic recommendations for ivacaftor based on preemptive CFTR genotype results. Ivacaftor has recently been approved for the treatment of cystic fibrosis (CF) in patients with a known variant (G551D-CFTR) in the CF transmembrane conductance regulator protein (CFTR). The purpose of this guideline is to provide information to facilitate the interpretation of genotype tests in order to guide ivacaftor therapy. Detailed guidelines for the use of ivacaftor as well as analyses of cost-effectiveness are beyond the scope of this document.
Introduction: Despite the existing data on the Multisystem Inflammatory Syndrome in Children (MIS-C), the factors that determine these patients evolution remain elusive. Answers may lie, at least in part, in genetics. It is currently under investigation that MIS-C patients may have an underlying innate error of immunity (IEI), whether of monogenic, digenic, or even oligogenic origin.Methods:To further investigate this hypothesis, 30 patients with MIS-C were submitted to whole exome sequencing. Results:Analyses of genes associated with MIS-C, MIS-A, severe covid-19, and Kawasaki disease identified twenty-nine patients with rare potentially damaging variants (50 variants were identified in 38 different genes), including those previously described in IFNA21 and IFIH1 genes, new variants in genes previously described in MIS-C patients (KMT2D, CFB, and PRF1), and variants in genes newly associated to MIS-C such as APOL1, TNFRSF13B, and G6PD. In addition, gene ontology enrichment pointed to the involvement of thirteen major pathways, including complement system, hematopoiesis, immune system development, and type II interferon signaling, that were not yet reported in MIS-C.Discussion: These data strongly indicate that different gene families may favor MIS- C development. Larger cohort studies with healthy controls and other omics approaches, such as proteomics and RNAseq, will be precious to better understanding the disease dynamics.Keywords: multisystem inflammatory syndrome in children, pediatric inflammatory multisystem syndrome, coronavirus infection, mucocutaneous lymph node syndrome, Kawasaki disease, whole exome sequencing, whole exome sequencing
Extensive phenotypic variability is commonly observed in individuals with Mendelian disorders, even among those with identical genotypes in the disease-causing gene. To determine whether variants within and surrounding CFTR contribute to phenotypic variability in cystic fibrosis (CF), we performed deep sequencing of CFTR in 762 patients homozygous for the common CF-causing variant, F508del. In phase 1, ~200 kb encompassing CFTR and extending 10 kb 5′ and 5 kb 3′ of the gene was sequenced in 486 F508del homozygotes selected from the extremes of sweat chloride concentration. In phase 2, a 510 kb region, which included the entire topologically associated domain of CFTR, was sequenced in 276 F508del homozygotes drawn from extremes of lung function. An additional 163 individuals who carried F508del and a different CF-causing variant were sequenced to inform haplotype construction. Region-based burden testing of both common and rare variants revealed seven regions of significance (α=0.01), five of which overlapped known regulatory elements or chromatin interactions. Notably, the −80 kb locus known to interact with the CFTR promoter was associated with variation in both CF traits. Haplotype analysis revealed a single rare recombination event (1.9% frequency) in intron 15 of CFTR bearing the F508del variant. Otherwise, the majority of F508del chromosomes were markedly similar, consistent with a single origin of the F508del allele. Together, these high-resolution variant analyses of the CFTR locus suggest a role for non-coding regulatory motifs in trait variation among individuals carrying the common CF allele.
The work we present here is based on the recent extension of the syntax of the Biological Expression Language (BEL), which now allows for the representation of genetic variation information in cause-and-effect models. In our article, we describe, how genetic variation information can be used to identify candidate disease mechanisms in diseases with complex aetiology such as Alzheimer’s disease and Parkinson’s disease. In those diseases, we have to assume that many genetic variants contribute moderately to the overall dysregulation that in the case of neurodegenerative diseases has such a long incubation time until the first clinical symptoms are detectable. Owing to the multilevel nature of dysregulation events, systems biomedicine modelling approaches need to combine mechanistic information from various levels, including gene expression, microRNA (miRNA) expression, protein–protein interaction, genetic variation and pathway. OpenBEL, the open source version of BEL, has recently been extended to match this requirement, and we demonstrate in our article, how candidate mechanisms for early dysregulation events in Alzheimer’s disease can be identified based on an integrative mining approach that identifies ‘chains of causation’ that include single nucleotide polymorphism information in BEL models.Keywords: BEL model, Alzheimer’s disease, genetic variants, GWAS, causal reasoning, cause-and-effect
Create subject predicate subject logic triplets using singlue nucleotide polymorphism rs rs113993960 and their disease associations and output it as a subject predicate subject logic triplet. An example subject predicate subject triplet could be Biliary Atresia - results in - biliary obstruction. Create10 of these triplets.