-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorboard_data_03_csv_04.py
92 lines (66 loc) · 3.42 KB
/
tensorboard_data_03_csv_04.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import json
import numpy as np
import pandas as pd
def smooth(scalars, weight): # Weight between 0 and 1
last = scalars[0] # First value in the plot (first timestep)
smoothed = list()
for point in scalars:
smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value
smoothed.append(smoothed_val) # Save it
last = smoothed_val # Anchor the last smoothed value
return smoothed
if __name__ == "__main__":
# Source directory where files are located
source_dir = os.path.join(os.getcwd(), "tensorboard_data_02_json_results")
# Destination directory where files will be copied
destination_dir = os.path.join(os.getcwd(), "tensorboard_data_03_csv_results")
# Find all files in the source directory starting with "events", choose 3 version to be draw on image
files = []
for root, dirs, filenames in os.walk(source_dir):
normal_root = os.path.normpath(root)
for filename in filenames:
version = os.path.split(normal_root)[-2]
if filename.startswith('events') and any(sub in version for sub in ('v8.0.0', 'v5.0.1')):
files.append(os.path.join(root, filename))
# Legend labels of tensorboard_data_03_csv.py
legend_labels = {'v5.0.1': 'Decision Range', 'v8.0.0': 'No Decision Range'}
# Create an empty DataFrame with three columns
df = pd.DataFrame(columns=['Step', 'Value', 'Legend'])
print(df)
# Loop through each file found
for file_path in files:
# Get the directory where the file is located relative to the source directory
relative_dir = os.path.relpath(os.path.dirname(file_path), source_dir)
# Split the directory specifying the version number, va.b.c-d
first_level_dir = os.path.split(relative_dir.rstrip(os.sep))[0]
# Split the version number to get va.b.c
version_number = first_level_dir.split('-')[0]
# Load the JSON file
with open(file_path, 'r') as f:
json_data = json.load(f)
# Extract 'step' and 'value' from the list of dictionaries
steps = np.array([d['step'] for d in json_data])
values = np.array([d['value'] for d in json_data])
# Find smoothed values
smoothed_values = smooth(values, 0.95)
# Concatenate the two arrays along the second axis (columns)
concatenated_array = np.stack((steps, smoothed_values), axis=1)
print(concatenated_array.shape)
# Create a DataFrame from the numpy array
df2 = pd.DataFrame(concatenated_array, columns=['Step', 'Value'])
# Concatenate the two DataFrames
df = pd.concat([df, df2], ignore_index=True)
# Assign the string legend_labels[version_number] to the last rows of the Legend column
df.loc[len(df) - len(df2):, 'Legend'] = legend_labels[version_number]
# Print out the coverted files
print(f"Covert {file_path} to DataFrame")
# Create the destination directory
os.makedirs(destination_dir, exist_ok=True)
# Define the new filename with '.csv'
csv_filename = 'result_04.csv'
# Define the new path of .csv file
csv_filepath = os.path.join(destination_dir, csv_filename)
# Write DataFrame to CSV file
df.to_csv(csv_filepath, index=False) # Set index=False to exclude the index column in the CSV file
print("Convert operation completed.")