-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcube-face-roundary.py
101 lines (79 loc) · 2.4 KB
/
cube-face-roundary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
from typing import Literal
import rounding
# Real behavior of the rounding functions
# [-n .. n]
n = 7
# pixels
M = 512
# Ranges (to allow zooming to a particular region)
# Rx = (0.74, 0.76)
# Ry = (0.54, 0.56)
Rx = (-1, 1)
Ry = (-1, 1)
def round_to_angle(a: np.ndarray) -> np.ndarray:
min_max = n
q = rounding.anyrize_inv_sq(a, min_max, axis=-1)
# q = rounding.absmax_dumb_round(a, min_max, axis=-1)
# q = rounding.binary_offset(a, axis=-1)
# q = rounding.anyrize_offset_min_mean(a, min_max, axis=-1)
# q = rounding.make_qx_quants(min_max, a)
an = a / np.sqrt(np.sum(np.square(a), axis=-1, keepdims=True))
qn = q.q / np.sqrt(np.sum(np.square(q.q), axis=-1, keepdims=True))
qs = np.clip(rounding.np_roundf(a / q.sc), -abs(min_max), abs(min_max))
qsn = qs / np.sqrt(np.sum(np.square(qs), axis=-1, keepdims=True))
# return np.sum(an * qn, axis=-1)
return -np.sum(np.square(a - q.v), axis=-1)
# Cool geometric shapes
# return np.sum(qsn * qn, axis=-1)
# assert q.sc is not None and q.iscale is not None
# return q.iscale / q.sc
# return np.sum(
# np.square(
# rounding.np_roundf(a / q.sc) # np.max(abs(a), axis=-1, keepdims=True)),
# ),
# axis=-1,
# keepdims=True,
# )
# return q.sc / np.max(abs(a), axis=-1, keepdims=True)
# np.sqrt(np.sum(a * a, axis=-1, keepdims=True))
# s = np.sum(a * a, axis=-1, keepdims=True)
# ss = s - a * a
# return np.sum(ss, axis=-1, keepdims=True)
plane = np.array(
[
[
Rx[0] + (Rx[1] - Rx[0]) * (i / (M - 1)),
Ry[0] + (Ry[1] - Ry[0]) * (j / (M - 1)),
1,
# 0.73,
# 0.8,
]
for i in range(M)
for j in range(M)
]
)
cos = round_to_angle(plane)
cos = cos.reshape((M, M))
print(f"{np.min(cos)=}")
print(f"{np.mean(cos)=}")
print(f"{np.max(cos)=}")
plt.figure()
plt.imshow(cos)
plt.show()
# 2*n + 1
prefix = {
1: "tern", # ternary
2: "pent", # pentary
3: "hept", # heptary
4: "enne", # enneary
5: "hendec", # hendecary
7: "pentadec", # pentadecary
15: "tricontahen", # tricontahenary
}.get(n, f"{n}_")
plt.figure(dpi=96, figsize=(cos.shape[-1] / 96, cos.shape[-2] / 96))
plt.figimage(cos)
plt.savefig(f"images/cube-face-round-{prefix}ary-{2*M}x{2*M}.png")
plt.close()