diff --git a/examples/llava_next_example.py b/examples/llava_next_example.py new file mode 100644 index 0000000000000..e90a86abe41cb --- /dev/null +++ b/examples/llava_next_example.py @@ -0,0 +1,38 @@ +from io import BytesIO + +import requests +from PIL import Image + +from vllm import LLM, SamplingParams +from vllm.multimodal.image import ImagePixelData + +# Dynamic image input is currently not supported and therefore +# a fixed image input shape and its corresponding feature size is required. +# See https://github.com/vllm-project/vllm/pull/4199 for the complete +# configuration matrix. + +llm = LLM( + model="llava-hf/llava-v1.6-mistral-7b-hf", + image_input_type="pixel_values", + image_token_id=32000, + image_input_shape="1,3,336,336", + image_feature_size=1176, +) + +prompt = "[INST] " + "" * 1176 + "\nWhat is shown in this image? [/INST]" +url = "https://h2o-release.s3.amazonaws.com/h2ogpt/bigben.jpg" +image = Image.open(BytesIO(requests.get(url).content)) +sampling_params = SamplingParams(temperature=0.8, top_p=0.95, max_tokens=100) + +outputs = llm.generate( + { + "prompt": prompt, + "multi_modal_data": ImagePixelData(image), + }, + sampling_params=sampling_params) + +generated_text = "" +for o in outputs: + generated_text += o.outputs[0].text + +print(f"LLM output:{generated_text}")