forked from vangelisv/thea
-
Notifications
You must be signed in to change notification settings - Fork 3
/
owl2_lcs.pl
1057 lines (877 loc) · 35.1 KB
/
owl2_lcs.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* -*- Mode: Prolog -*- */
:- module(owl2_lcs,
[
prepare_optimizations/1,
class_pair_common_subsumer/3,
class_pair_common_subsumer/4,
class_pair_least_common_subsumer/3,
class_pair_least_common_subsumer/4,
derived_axiom_for_lcs/4,
individual_neighborhood_expression/3,
individual_msc/2,
individual_msc/3,
description_pivot/2,
simple_lcs/5,
class_pair_gmatch/3
]).
/** <module> OWL2 Least Common Subsumer
---+ Synopsis
This module is used for caclulating meaningful least common subsumer
(LCS) class expressions.
Note this is not as trivial as calculating the least common subsuming
named class, see the examples below.
This module also has similar functionality for individuals. It
includes a method individual_msc/3 which will calculate the minimal
subsuming class for an individual, up to a specified depth.
---+ Example
Consider the ontology:
==
Class: spicy_tomato_pizza
EquivalentTo: pizza and hasPart some (topping and hasQuality some spicy) and hasPart some tomato
Class: pizza
SubClassOf: hasPart some mozzarella
Class: spicy_paneer_curry
EquivalentTo: curry and hasPart some paneer and hasPart some (sauce and derivesFrom some tomato) and hasQuality some spicy
Class: paneer SubClassOf: cheese
Class: mozzarella SubClassOf: cheese
Class: pizza SubClassOf: food
Class: curry SubClassOf: food
==
The named LCS of STP and SPC is "food", which is not very informative. This tool derives a more specific class expression:
==
food and
((hasPart some tomato) or (hasPart some derivesFrom some tomato)) and
((hasPart some hasQuality some spicy) or (hasQuality some spicy)) and
hasPart some cheese
==
This is quite an awkward class expression. It can be simplified by adding property chain axioms to the ontology.
---+ Usage
One convenient way to use this is via the command line:
==
thea testfiles/food.owl --sim-pair PastaWithNonSpicyRedSauceCourse NonSpicyRedMeatCourse --save-opts tabular,plsyn,combined
==
The above should work from within the thea directory
The result should be:
==
MealCourse and
hasDrink only (hasBody value Medium) and
hasDrink only (hasColor value Red) and
hasDrink only (hasSugar value Dry) and
hasFood only EdibleThing
==
*/
:- use_module(owl2_model).
:- use_module(owl2_reasoner).
:- use_module(owl2_graph_reasoner). % force this for now
%% prepare_optimizations(Opts)
% uses blip tabling module to cache reasoner calls
% (replace with reasoner caching?)
prepare_optimizations(_) :-
ensure_loaded(library(thea2/util/memoization)),
table_pred(is_subsumed_by/3),
table_pred(reasoner_get_subsumer/3),
table_pred(class_pair_common_subsumer_ext/4),
graph_reasoner_memoize.
% HARCODE ALERT!!
% TODO - make this a hook
exclude('http://ontology.neuinfo.org/NIF/Backend/BIRNLex_annotation_properties.owl#_birnlex_limbo_class').
exclude('http://ontology.neuinfo.org/NIF/DigitalEntities/NIF-Investigation.owl#birnlex_2087').
exclude('http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-GrossAnatomy.owl#birnlex_6'). % anatomical entity
exclude('http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-GrossAnatomy.owl#birnlex_4'). % organ
exclude('http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-GrossAnatomy.owl#birnlex_16'). % regional part of organ
exclude('http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-GrossAnatomy.owl#birnlex_1167'). % Regional part of brain
exclude('http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-Molecule.owl#CHEBI_23367'). % molecular entity
exclude('http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-Molecule.owl#nlx_mol_20090303'). % molecular role
%%%%%%exclude(X) :- ontologyAxiom(O,class(X)),\+((subClassOf(X,Y),ontologyAxiom(O,class(Y)))). % exclude root classes DO NOT USE - multiple declarations
exclude(someValuesFrom('http://www.obofoundry.org/ro/ro.owl#has_proper_part',_)).
exclude(allValuesFrom('http://www.obofoundry.org/ro/ro.owl#has_proper_part',_)).
exclude(Class) :-
atom(Class),
sub_atom(Class,0,_,_,'http://www.ifomis.org').
exclude_tr(someValuesFrom(_,X)) :- exclude_tr(X).
exclude_tr(allValuesFrom(_,X)) :- exclude_tr(X).
exclude_tr(X) :- exclude(X).
%% reasoner_get_subsumer(+Class,?SuperClass)
% wrapper for reasoner_ask/2 over subClassOf/2
reasoner_get_subsumer(C,P) :-
reasoner_get_subsumer(C,P,[]).
reasoner_get_subsumer(C,P,Opts) :-
opts_reasoner(Opts,R),
reasoner_ask(R,subClassOf(C,P)),
\+ exclude_tr(P).
opts_reasoner(Opts,R) :- option(reasoner(R),Opts,graph_reasoner),!.
% TODO - consider renaming all preds class_pair ==> entity_pair (also works for individuals)
%% class_pair_common_subsumers(+ClassA,+ClassB,?CommonSubsumers:set,+Opts:list) is det
% CommonSubsumers is the set of classes and class expressions that subsume A and B
class_pair_common_subsumers(A,B,CSs,Opts) :-
class_pair_common_subsumers(A,B,_,_,CSs,Opts).
%% class_pair_common_subsumers(+ClassA,+ClassB,?AncsA:set,?AncsB:set,?CommonSubsumers:set,+Opts:list) is det
class_pair_common_subsumers(A,B,APs,BPs,CSs,Opts) :-
debug(owlsim,'finding cs(~w,~w) via ~w',[A,B,Opts]),
setof(X,reasoner_get_subsumer(A,X,Opts),APs),
setof(X,reasoner_get_subsumer(B,X,Opts),BPs),
debug(owlsim_detail,' finding intersection',[]),
ord_intersection(APs,BPs,CSs).
%% class_pair_common_subsumer(+ClassA,+ClassB,?CommonSubsumer) is nondet
% see class_pair_common_subsumers/4
class_pair_common_subsumer(A,B,CS) :-
class_pair_common_subsumer(A,B,CS,[]).
%% class_pair_common_subsumer(+ClassA,+ClassB,?CommonSubsumer,+Opts:list) is nondet
% see class_pair_common_subsumers/4
class_pair_common_subsumer(A,B,CS,Opts) :-
class_pair_common_subsumers(A,B,CSs,Opts),
member(CS,CSs).
%% class_pair_least_common_subsumer(+ClassA,+ClassB,?LeastCommonSubsumer) is nondet
% see class_pair_least_common_subsumer/4
class_pair_least_common_subsumer(A,B,LCS) :-
class_pair_least_common_subsumer(A,B,LCS,[]).
%% class_pair_least_common_subsumer(+ClassA,+ClassB,?LeastCommonSubsumer,+Opts:list) is nondet
% true if LCS subsumes A and B, and there is no more specific class X that also subsumes A and B
class_pair_least_common_subsumer(A,B,LCS,Opts) :-
member(basic(true),Opts),
!,
class_pair_least_common_subsumer_basic(A,B,LCS,Opts).
class_pair_least_common_subsumer(A,B,LCS,Opts) :-
% default - use ext_combined algorithm
class_pair_least_common_subsumer_ext_combined(A,B,LCS,Opts).
class_pair_least_common_subsumer_basic(A,B,LCS,Opts) :-
class_pair_common_subsumers(A,B,CSs,Opts),
member(LCS,CSs),
opts_reasoner(Opts,R),
% TODO - equivalence
\+ ((member(X,CSs),
X\=LCS,
reasoner_ask(R,subClassOf(X,LCS)))).
% ----------------------------------------
% UNION
% ----------------------------------------
%% class_pair_common_subsumers_with_union(+ClassA,+ClassB,?CommonSubsumers:set,+Opts:list) is det
%
% generally not called directly - instead use class_pair_common_subsumer_ext/3, which uses this
%
% as class_pair_common_subsumers/4, but also includes union constructs in the set of expressions.
% this is only done in certain circumstances (we do not want "trivial" unions).
% currently, if the set of common subsumers include:
% * X
% * someValuesFrom(R,X)
% then the union of these will be returned in the set.
%
% the rationale is that these represent something in common.
%
% for example,
% ==
% LCS(pizza and has_part some jalapeno, habanero) = spicy_pepper or (has_part some spicy_pepper)
% ==
% if one person likes pizza with jalapeno and another person likes habanero then it seems
% reasonable to include "spicy pepper or has part some spicy pepper" in the set of things that
% these people like in common.
% (another way to handle this particular example is with a property chain, but we may not
% have property chains defined in all situations)
class_pair_common_subsumers_with_union(A,B,CSs,Opts) :-
setof(CS,class_pair_common_subsumer_with_union(A,B,CS,Opts),CSs).
class_pair_common_subsumer_with_union(A,B,CS,Opts) :-
debug(owlsim_detail,'finding cs+u(~w,~w)',[A,B]),
%class_pair_common_subsumers(A,B,APs,BPs,_,Opts),
setof(X,reasoner_get_subsumer(A,X,Opts),APs),
setof(X,reasoner_get_subsumer(B,X,Opts),BPs),
member(AP,APs),
member(BP,BPs),
debug(owlsim_detail,' candidate_u(~w,~w)',[AP,BP]),
mk_union(AP,BP,U),
debug(owlsim_detail,' U(~w,~w) = ~w',[AP,BP,U]),
flatten_union(U,CS),
debug(owlsim_detail,' U_normalized(~w,~w) == ~w',[AP,BP,CS]).
class_pair_common_subsumer_with_union(A,B,CS,Opts) :-
class_pair_common_subsumer(A,B,CS,Opts).
%mk_union(X,someValuesFrom(R,X),unionOf([X,someValuesFrom(R,X)])).
%mk_union(someValuesFrom(R,X),X,unionOf([X,someValuesFrom(R,X)])).
%mk_union(someValuesFrom(R,X),someValuesFrom(R,Y),someValuesFrom(R,U)) :- mk_union(X,Y,U).
mk_union(X,X,X) :- !.
mk_union(someValuesFrom(R,X),Y,unionOf([someValuesFrom(R,X),Y]) ) :-
mk_union(X,Y,_).
mk_union(X,someValuesFrom(R,Y),unionOf([X,someValuesFrom(R,Y)]) ) :-
mk_union(X,Y,_).
mk_union(allValuesFrom(R,X),Y,unionOf([allValuesFrom(R,X),Y]) ) :-
mk_union(X,Y,_).
mk_union(X,allValuesFrom(R,Y),unionOf([X,allValuesFrom(R,Y)]) ) :-
mk_union(X,Y,_).
% TODO: cvt to NF
flatten_union(unionOf(InL),unionOf(OutL)) :-
!,
findall(X,
( member(Top,InL),
flatten_union(Top,TopF),
( TopF=unionOf(NestL)
-> member(X,NestL)
; X=TopF)),
OutL).
flatten_union(X,X).
% ----------------------------------------
% EXTENDED - experimental
% ----------------------------------------
% finds class expressions
%% class_pair_common_subsumer_ext(+ClassA,+ClassB,?CommonSubsumerExpression,Opts)
%
% expression is either intersectionOf(...) | someValuesFrom(Prop,Expr) | unionOf(...)
%
% if both C1 and C2 are in the set of common subsumers for A and B,
% then C1^C2 is also a common subsumer. There may be other common subsumers
% that can be obtained by "threading" the class expressions together.
class_pair_common_subsumer_ext(A,B,CS_Out,Opts) :-
% first enumerate standard common subsumers
class_pair_common_subsumers_with_union(A,B,CSs,Opts),
debug(owlsim_detail,' union cs(~w, ~w) = ~w',[A,B,CSs]),
% choose candidate pair of classes
member(C1,CSs), % eg r1 some (r2 some a)
member(C2,CSs), % eg r1 some (r2 some b)
C1 @< C2, % arbitrary direction
debug(owlsim_detail,' candidate intersection: ~w ^ ~w',[C1,C2]),
\+ subsumes_or_subsumed_by(C1,C2,Opts),
debug(owlsim_detail,' NR - now try combining',[]),
% now make r1 some (r2 some a and b)
combine_expr_pair(C1,C2,CS,Opts),
debug(owlsim_detail,' candidate combined CS: ~w',[CS]),
is_subsumed_by_chk(A,CS,Opts),
is_subsumed_by_chk(B,CS,Opts),
CS_Out=CS.
%class_pair_common_subsumer_ext_chain(A,B,CSs,[C1,C2],CS,CS_Out,Opts).
/*
% 3-way; not very generic
xxxclass_pair_common_subsumer_ext(A,B,CS_Out,Opts) :-
class_pair_common_subsumers_with_union(A,B,CSs,Opts),
select(C1,CSs,CSs_r1), % eg r1 some (r2 some a)
select(C2,CSs_r1,CSs_r2), % eg r1 some (r2 some b)
member(C3,CSs_r2), % eg r1 some (r2 some b)
C1 @< C2, % arbitrary direction
C2 @< C3,
debug(owlsim_detail,' candidate 3-way intersection: ~w ^ ~w ^ ~w',[C1,C2,C3]),
\+ subsumes_or_subsumed_by(C1,C2,Opts),
\+ subsumes_or_subsumed_by(C1,C3,Opts),
\+ subsumes_or_subsumed_by(C2,C3,Opts),
% now make r1 some (r2 some a and b)
combine_expr_pair(C1,C2,CS_x,Opts),
combine_expr_pair(CS_x,C3,CS,Opts),
debug(owlsim_detail,' candidate 3-way CS: ~w',[CS]),
is_subsumed_by_chk(A,CS,Opts),
is_subsumed_by_chk(B,CS,Opts),
CS_Out=CS.
%class_pair_common_subsumer_ext_chain(A,B,CSs,[C1,C2],CS,CS_Out,Opts).
% DOES NOT WORK YET
class_pair_common_subsumer_ext_chain(A,B,CSs,Used,CS_In,CS_Out,Opts) :-
length(Used,NumUsed),
NumUsed < 4,
member(C3,CSs),
\+ member(C3,Used),
\+ subsumes_or_subsumed_by(C3,CS_In),
( NumUsed=3
-> trace
; true),
combine_expr_pair(C3,CS_In,CS_Next,Opts),
is_subsumed_by_chk(A,CS_Next,Opts),
is_subsumed_by_chk(B,CS_Next,Opts),
class_pair_common_subsumer_ext_chain(A,B,CSs,[C3|Used],CS_Next,CS_Out,Opts).
class_pair_common_subsumer_ext_chain(_,_,_,_,_,CS,CS,Opts).
*/
all_class_pair_common_subsumer_ext(A,B,CS_Set,Opts) :-
setof(CS,class_pair_common_subsumer_ext(A,B,CS,Opts),CS_Set), % CONSIDER MEMOIZING THIS?
!.
all_class_pair_common_subsumer_ext(A,B,CS_Set,Opts) :-
% no intersections found, return basic set
class_pair_common_subsumers_with_union(A,B,CS_Set,Opts).
%% class_pair_least_common_subsumer_ext(+ClassA,+ClassB,?CommonSubsumerExpression,Opts)
class_pair_least_common_subsumer_ext(A,B,CS_Simple,Opts) :-
all_class_pair_common_subsumer_ext(A,B,CS_Set,Opts), % CONSIDER MEMOIZING THIS?
debug(owlsim_detail,' calculated set of extended subsumers.',[]),
member(CS,CS_Set),
debug(owlsim_detail,' candidate LCS: ~w',[CS]),
% todo - include equivsets? just exclude structurally identical?
\+ ((member(X,CS_Set),
\+ is_equivalent(X,CS,Opts),
is_subsumed_by_chk(X,CS,Opts),
debug(foo,' fail: is_subsumed_by_chk(~q,~q).',[X,CS]))),
simplify_expr(CS,CS_Simple).
%% class_pair_least_common_subsumer_ext_combined(+ClassA,+ClassB,?CommonSubsumerExpression,Opts)
%
% as class_pair_common_subsumer_ext/4, but combines all subsumers into a single
% intersectionOf expression
class_pair_least_common_subsumer_ext_combined(A,B,CS_Combined,Opts) :-
setof(CS,class_pair_least_common_subsumer_ext(A,B,CS,Opts),CS_Set),
normalize_expr(intersectionOf(CS_Set),CS_Combined,Opts).
%% normalize_expr(+CE,?CE_Norm,Opts)
%
% generated CEs may have redundant or inconsistent structure
% TODO: full CNF?
normalize_expr(intersectionOf([X]),Y,Opts) :-
!,
normalize_expr(X,Y,Opts).
normalize_expr(intersectionOf(L1),Y,Opts) :-
% example: (R some (A and B)) and (R some A)
% ==> (R some (A and B))
select(X1,L1,L2),
select(X2,L2,L3),
reasoner_get_subsumer(X1,X2,Opts),
!,
normalize_expr(intersectionOf([X1|L3]),Y,Opts).
normalize_expr(intersectionOf(OuterL),Y,Opts) :-
setof(X,intersection_member(X,OuterL),Xs),
Xs\=OuterL,
!,
normalize_expr(intersectionOf(Xs),Y,Opts).
normalize_expr(X,X,_Opts).
% e.g. X=car L=[..., (.. and X and ..), ...]
intersection_member(X,L) :-
member(E,L),
E=intersectionOf(IL),
member(X,IL).
intersection_member(E,L) :-
member(E,L),
E\=intersectionOf(_).
simplify_expr(C,C) :- atom(C),!.
simplify_expr(CE,C) :- equivalent_to(CE,C),atom(C),!.
simplify_expr(CE,CE2) :-
CE =.. [F|Args],
Args\=[],
!,
maplist(simplify_expr,Args,Args2),
CE2 =.. [F|Args2].
simplify_expr(C,C).
%% combine_expr_pair(+CE1,+CE2,?CE_Subsumer,Opts)
%
% takes two linear chain expressions C1, C2 and generates class expressions
% that are the superclass of both C1 and C2.
%
% this includes not only the trivial intersectionOf expression "C1 and C2" but also
% non-trivial expressions obtained by "weaving" C1 and C2 together
%
% for example, imagine comparing people based on which movie directors they like.
% we have 3 object properties:
% * likes - fan to director
% * directs - director to film
% * about - film to subject matter
%
% e.g. likes some (directs some (about some foo)) +
% likes some (directs some (about some bar))
% => 1. likes some (directs some (about some foo and bar))
% 2. likes some (directs some about some foo) and (directs some about some bar)
% 3. (likes some directs some about some foo) and (likes some directs some about some bar)
%
% The 3rd expression is the trivial expression, but 1. is obtained by intersecting the innermost
% parts of the input expressions.
%
% note this only works for input expressions that are "linear chains" - these can be obtained
% by following any class up the hierarchy (see the owl2_graph_reasoner algorithm)
combine_expr_pair(C1,C2,intersectionOf([C1,C2]),_).
combine_expr_pair(C1x,C2x,someValuesFrom(R,CE) ,Opts) :-
C1x=someValuesFrom(R,C1),
C2x=someValuesFrom(R,C2),
\+ subsumes_or_subsumed_by(C1,C2,Opts),
combine_expr_pair(C1,C2,CE,Opts).
combine_expr_pair(C1x,C2x,allValuesFrom(R,CE) ,Opts) :-
C1x=allValuesFrom(R,C1),
C2x=allValuesFrom(R,C2),
\+ subsumes_or_subsumed_by(C1,C2,Opts),
combine_expr_pair(C1,C2,CE,Opts).
/*
combine_expr_pair(C1x,C2x,CE,Opts) :- combine_as_union(C1x,C2x,CE,Opts).
combine_expr_pair(C1x,C2x,CE,Opts) :- combine_as_union(C2x,C1x,CE,Opts).
combine_as_union(C1x,C2,unionOf(C1x,C2),Opts) :-
C1x = someValuesFrom(R,C2).
*/
% ----------------------------------------
% REASONING
% ----------------------------------------
% may be partially redundant with reasoner modules.
% however, we may want to use cached reasoner results,
% and we may have novel class expressions
% particular checks are made for union, intersection and
% restrictions - these are not implemented in the owl2_graph_reasoner
% TODO: stratify these
is_equivalent(C,C,_) :- !.
is_equivalent(C1,C2,Opts) :-
is_subsumed_by_chk(C1,C2,Opts),
is_subsumed_by_chk(C2,C1,Opts).
subsumes_or_subsumed_by(C1,C2,Opts) :- is_subsumed_by_chk(C1,C2,Opts).
subsumes_or_subsumed_by(C1,C2,Opts) :- is_subsumed_by_chk(C2,C1,Opts).
%% is_subsumed_by_chk(+ClassX,+ClassY,Opts) :- is semidet
% semideterministic version of is_subsumed_by/3
is_subsumed_by_chk(X,Y,Opts) :-
!,
is_subsumed_by(X,Y,Opts).
is_subsumed_by(X,X,_).
is_subsumed_by(X,Y,Opts) :-
atom(X),
equivalent_to(X,Expr),
\+ atom(Expr), % avoid cycles - rewrite named classes as expressions only
is_subsumed_by(Expr,Y,Opts).
is_subsumed_by(A,unionOf(L),Opts) :-
member(X,L),
is_subsumed_by(A,X,Opts).
is_subsumed_by(unionOf(L),B,Opts) :- % todo (A or B) < (A or B or C)
forall(member(X,L),
is_subsumed_by(X,B,Opts)).
is_subsumed_by(A,intersectionOf(L),Opts) :-
forall(member(X,L),
is_subsumed_by(A,X,Opts)).
is_subsumed_by(intersectionOf(L),B,Opts) :-
member(X,L),
is_subsumed_by(X,B,Opts).
is_subsumed_by(someValuesFrom(P,X),someValuesFrom(P,Y),Opts) :-
is_subsumed_by(X,Y,Opts).
is_subsumed_by(someValuesFrom(P,X),someValuesFrom(P,Y),Opts) :-
transitiveProperty(P),
is_subsumed_by(X,someValuesFrom(P,Y),Opts).
is_subsumed_by(A,X,Opts) :-
opts_reasoner(Opts,R),
reasoner_ask(R,subClassOf(A,X1)),
X1\=A, % non-reflexive
X=X1.
% ----------------------------------------
% AXIOM GENERATION
% ----------------------------------------
% EXAMPLE:
% ==
% thea --assume-entity-declarations testfiles/clinchem.plsyn --save-opt "tr(sim(X,Y,A),derived_axiom_for_lcs(X,Y,A,Ax),'http://z.org#',Ax)" --sim-pair increased_foo_metabolism increased_foo --to owl --save-ontology 'http://z.org#'
% ==
derived_axiom_for_lcs(X,Y,LCS,Axiom) :-
hack_name(X,Y,LCS_Named),
debug(owlsim,'lcs_named: ~w',[LCS_Named]),
Axioms =
[
subClassOf(X,LCS_Named),
subClassOf(Y,LCS_Named),
class(LCS_Named),
equivalentClasses([LCS_Named,LCS])
],
member(Axiom,Axioms).
split_on(A,D,X,Y) :-
sub_atom(A,P,_,_,D),
sub_atom(A,0,P,_,X),
Pp1 is P+1,
sub_atom(A,Pp1,_,0,Y).
hack_name(X,Y,N) :-
D='#',
split_on(X,D,Pre,RX),
split_on(Y,D,Pre,RY),
concat_atom([Pre,D,'LCS-',RX,'-vs-',RY],N),
!.
hack_name(X,_,N) :-
!,
gensym('-lcs',Z),
atom_concat(X,Z,N).
xxhack_name(X,Y,N) :-
( D='/'
; D='_'),
concat_atom([Pre|L1],D,X),
concat_atom([Pre|L2],D,Y),
append(L1,L2,L3),
concat_atom([Pre|L3],D,N),
!.
% ----------------------------------------
% INSTANCE GRAPHS
% ----------------------------------------
individual_msc(Individual,ParentExpr) :-
individual_msc(Individual,ParentExpr,[]).
individual_msc(Individual,ParentExpr,Opts) :-
option(max_depth(MD),Opts,3),
individual_neighborhood_expression(Individual,ParentExpr,MD,Opts).
individual_neighborhood_expression(ID,Expr,MaxDepth) :-
individual_neighborhood_expression(ID,Expr,MaxDepth,[]).
individual_neighborhood_expression(ID,Expr,MaxDepth,Opts) :-
setof(ID,is_individual(ID),IDs),
member(ID,IDs),
debug(mcs,'individual_nex(~w)',[ID]),
individual_neighbor_graph([0/ID/Expr-Expr],[],MaxDepth,Opts).
individual_neighbor_graph([Depth/I/InnerExpr-_|ScheduledCCPairs],Visisted,MaxDepth,Opts) :-
Depth < MaxDepth,
classAssertion(C,I),
debug(mcs,'C: ~w E: ~w',[ci(C,I),Expr]),
DepthPlus1 is Depth+1,
setof(Prop-Parent,
( individual_parent_over(I,Parent,Prop),
\+ exclude_entity(Parent,Opts),
\+ord_memberchk(Parent,Visisted)), % TODO; check for subpaths instead
NextLinks),
!,
findall(DepthPlus1/Parent/PE-someValuesFrom(Prop,PE),member(Prop-Parent,NextLinks),PRPairs),
prpairs_list(PRPairs,Restrictions),
InnerExpr=intersectionOf([C|Restrictions]),
debug(mcs,' E: ~w',[Expr]),
append(ScheduledCCPairs,PRPairs,NewScheduledCCPairs),
debug(mcs,' new: ~w',[NewScheduledCCPairs]),
individual_neighbor_graph(NewScheduledCCPairs,[I|Visisted],MaxDepth,Opts).
individual_neighbor_graph([_/I/InnerExpr-_|ScheduledCCPairs],Visisted,MaxDepth,Opts) :-
!,
% I has no parents, or max depth is reached
classAssertion(InnerExpr,I),
individual_neighbor_graph(ScheduledCCPairs,[I|Visisted],MaxDepth,Opts).
individual_neighbor_graph([],_,_,_). % iterature until all scheduled nodes processed
prpairs_list([],[]).
prpairs_list([_-R|PL],[R|RL]) :-
prpairs_list(PL,RL).
is_individual(ID) :- namedIndividual(ID).
is_individual(ID) :- classAssertion(_,ID).
individual_parent_over(Child,Parent,Prop) :-
propertyAssertion(Prop,Child,Parent),
\+ annotationProperty(Prop),
Parent \= literal(_).
individual_parent_over(Child,Parent,InverseProp) :-
propertyAssertion(Prop,Parent,Child),
mk_inverse_prop(Prop,InverseProp),
\+ annotationProperty(Prop),
Parent \= literal(_).
mk_inverse_prop(Prop,InverseProp) :- inverseProperties(Prop,InverseProp),!.
mk_inverse_prop(Prop,InverseProp) :- inverseProperties(InverseProp,Prop),!.
mk_inverse_prop(Prop,inverseOf(Prop)).
exclude_entity(X,Opts) :-
member(exclude_class(C),Opts),
classAssertion(C,X).
% ----------------------------------------
% PIVOT
% ----------------------------------------
%% description_pivot(+InDesc,?OutDesc) is nondet
% 'rotate' a description around a separate pivot point.
% an owl description corresponds to a tree, we can re-root the tree at any node.
% Examples:
% ==
% R some X => [X, R' some thing]
% [A, R some X] => [X, R' some A]
% [A, B, R some X] = [X, R' some [A,B]]
% [A, Z, R some [B, S some X]] => [X, S' some [B, R' some [A,Z]]
% ==
description_pivot(In,Out) :-
description_pivot(In,'owl:Thing',Out_1),
remove_owl_thing(Out_1,Out).
%% description_pivot(+InDesc,+AccumDesc,?OutDesc) is nondet
%
% recursive descent: select an edge, invert it, point back to remaining
% edges from node (this is Accum), traverse to target of selected edge,
% passing Accum as argument
description_pivot(In,Accum,Out) :-
d_select_edge(In,P,To,Rest),
mk_inverse_prop(P,IP),
d_mk_edge(IP,Accum,Rest,NewAccum),
description_pivot(To,NewAccum,Out).
% base case: merge Accum (which points back up to remainder of graph)
% into current node
description_pivot(In,Accum,Out) :-
d_intersect(Accum,In,Out).
%% d_select_edge(+Desc,?Prop,?Desc,?Remaining:list) is nondet
d_select_edge(intersectionOf(L),P,To,L2) :-
select(someValuesFrom(P,To),L,L2).
d_select_edge(someValuesFrom(P,To),P,To,[]).
%% d_mk_edge(+Prop, +TgtDesc, +Descs:list, ?NewDesc)
d_mk_edge(Prop,TgtDesc,Descs,someValuesFrom(Prop,NewDesc) ) :-
d_cons(TgtDesc,Descs,NewDesc).
% d_cons(+Desc, +DL:list, ?NewDesc)
d_cons(D,L,New) :-
d_cons_1(D,L,NewL),
( NewL=[New]
-> true
; NewL=[]
-> New='owl:Thing'
; New=intersectionOf(NewL)).
d_cons_1('owl:Thing',L,L) :- !.
d_cons_1(intersectionOf(L1),L2,L3) :-
!,
append(L1,L2,L3).
d_cons_1(D,L,[D|L]).
d_intersect(A,B,intersectionOf([A,B])).
remove_owl_thing(intersectionOf(L),intersectionOf(L2)) :-
select('owl:Thing',L,L2),
!.
remove_owl_thing(X,X).
% ----------------------------------------
% SIMPLE LCS
% ----------------------------------------
simple_class_ancestor_over(X,A,RX) :-
class_ancestor_over(X,A,RX),
atom(A).
class_ancestors(X,AL) :-
setof(A,R^simple_class_ancestor_over(X,A,R),AL).
simple_cs(X,Y,A,RX,RY) :-
class_ancestors(X,XAL),
class_ancestors(Y,YAL),
ord_intersection(XAL,YAL,AL),
member(A,AL),
simple_class_ancestor_over(X,A,RX),
simple_class_ancestor_over(Y,A,RY).
simple_lcs(X,Y,A) :-
simple_lcs(X,Y,A,_,_).
simple_lcs(X,Y,A,RA) :-
simple_lcs(X,Y,A,RX,RY),
relation_union(RX,RY,RA).
simple_lcs(X,Y,A,RX,RY) :-
simple_cs(X,Y,A,RX,RY),
\+ ((simple_cs(X,Y,A2,RX2,RY2),
A2-RX2-RY2 \= A-RX-RY,
class_ancestor_over(A2,A,_))). % TODO
relation_union(R,R,R) :- !.
relation_union(RX,RY,or(RX,RY)) :- !.
simple_lcs_dist(X,Y,A,RA,D) :-
simple_lcs(X,Y,A,RA),
calc_lcs_dist(X,Y,A,D).
% TODO
calc_lcs_dist(A,A,A,0) :- !.
calc_lcs_dist(A,_,A,1) :- !.
calc_lcs_dist(_,A,A,1) :- !.
calc_lcs_dist(_,_,_,5).
/*
simple_lcs(X,Y,A,RX,RY) :-
simple_cs(X,Y,A,RX,RY),
\+ ((simple_cs(X,Y,A2,RX2,RY2),
A2-RX2-RY2 \= A-RX-RY,
class_ancestor_over(A2,A,R2),
%writeln('**test'(A<A2,R2,RX2,RY2)),
( path_contains(RX2,R2)
; path_contains(RY2,R2)))).
path_contains(R,R) :- !.
path_contains([],[_|_]) :- fail,!.
path_contains(_,[sub]) :- !.
path_contains(R,Sub) :- append(Sub,_,R),!.
*/
% ----------------------------------------
% GMATCH
% ----------------------------------------
class_pair_gmatch(L1,L2,M) :-
desc_edgeset(L1,S1),
desc_edgeset(L2,S2),
ord_intersection(S1,S2,M).
%% desc_edgeset(+Desc,?Edges:set) is semidet
% TODO: singletons
desc_edgeset(D,EL) :-
setof(E,d_edge_tr(D,E),EL).
%% d_edge_tr(+Desc,?Edge) is nondet
% Edge is an edge in the description, or subpart of the description
d_edge_tr(SD,E) :-
d_edge(SD,E,_).
d_edge_tr(SD,E) :-
d_edge(SD,_,X),
d_edge_tr(X,E).
d_edge(SD,e(S,T,R),TD) :-
d_named_parent(SD,S),
d_conn(SD,R,TD_1),
d_extend(TD_1,T,TD).
% d_extent(+In,?NextObj,?NextDesc)
d_extend(A,B,A) :-
d_named_parent(A,B),
!.
d_extend(A,B,X) :-
d_conn(A,_P,Z), % TODO
d_extend(Z,B,X).
d_conn(someValuesFrom(Prop,Tgt),Prop,Tgt).
d_conn(intersectionOf(L),Prop,Tgt) :-
member(X,L),
d_conn(X,Prop,Tgt).
d_conn(D,Prop,Tgt) :-
equivalent_to(D,intersectionOf(L)),
member(X,L),
d_conn(X,Prop,Tgt).
d_named_parent(D,P) :-
d_named_parent(D,P,[]).
d_named_parent(intersectionOf(L),P,VL) :-
!,
member(X,L),
d_named_parent(X,P,VL).
d_named_parent(D,P,VL) :-
\+ member(D,VL),
equivalent_to(D,EC),
!,
d_named_parent(EC,P,[D|VL]).
d_named_parent(D,D,_) :- atom(D).
edge_pair_subsumer_diff(E,E,E,0) :- !.
edge_pair_subsumer_diff(E1,E2,E3,Dist) :-
E1=e(S1,T1,R1),
E2=e(S2,T2,R2),
E3=e(S3,T3,R3),
simple_lcs_dist(S1,S2,S3,_RS3,DS),
simple_lcs_dist(T1,T2,T3,_RT3,DT),
relation_union(R1,R2,R3), % TODO
Dist is DS+DT.
d_pair_matching_edges(D1,D2,ML1,ML2) :-
desc_edgeset(D1,EL1),
desc_edgeset(D2,EL2),
e_pairs_scores(EL1,EL2,MEL),
findall(m(E1,E2,E3,Diff),
( member(E1,EL1),
best_match1(E1,MEL,E2,E3,Diff)),
ML1),
findall(m(E1,E2,E3,Diff),
( member(E2,EL2),
best_match1(E2,MEL,E1,E3,Diff)),
ML2).
compare_individuals(I1,I2,ML1,ML2) :-
individual_msc(I1,D1),
individual_msc(I2,D2),
d_pair_matching_edges(D1,D2,ML1,ML2).
e_pairs_scores(EL1,EL2,MEL) :-
setof(M,e_pairs_member_match(EL1,EL2,M),MEL).
e_pairs_member_match(L1,L2,m(E1,E2,E3,Diff)) :-
member(E1,L1),
member(E2,L2),
debug(gm,'testing: ~w vs ~w',[E1,E2]),
edge_pair_subsumer_diff(E1,E2,E3,Diff).
best_match1(E1,MEL,E2,E3,Diff) :-
setof(Diff-m(E2,E3),
member(m(E1,E2,E3,Diff),MEL),
[Diff-m(E2,E3)|_]).
best_match2(E2,MEL,E1,E3,Diff) :-
setof(Diff-m(E1,E3),
member(m(E1,E2,E3,Diff),MEL),
[Diff-m(E1,E3)|_]).
/*
d_parent(D,D).
d_parent(intersectionOf(L),P) :-
member(X,L),
d_parent(X,P).
d_parent(D,P) :-
equivalent_to(D,intersectionOf(L)),
member(X,L),
d_parent(X,P).
*/
% ----------------------------------------
% GRAPHS
% ----------------------------------------
:- multifile user:parse_arg_hook/3.
user:parse_arg_hook(['--sim-display-object',Ob|L],L,goal(owl2_lcs:display_object(Ob))) :-
assume_entity_declarations.
user:parse_arg_hook(['--sim-display-object-pair',X1,X2|L],L,goal(owl2_lcs:display_object_pair(X1,X2,[]))) :-
assume_entity_declarations.
:- use_module(util/dot).
% TODO: Opts
edge_gterm(e(S,_,_),node(S,[label=N])) :- node_label(S,N).
edge_gterm(e(_,T,_),node(T,[label=N])) :- node_label(T,N).
edge_gterm(e(S,T,R),edge(S,T,[label=RL])) :- node_label(R,RL).
edge_to_gterm(e(S,T,invis),edge(S,T,[weight=100]),_) :- !.
edge_to_gterm(e(S,T,R),GT,Opts) :-
GT=edge(S,T,[label=RL|Opts]),
node_label(R,RL).
node_to_gterm(N,GT,Opts) :-
GT=node(N,[label=NL|Opts]),
node_label(N,NL).
node_label(N,NL) :- labelAnnotation_value(N,NL),!.
node_label(N,N) :- atom(N),!.
node_label(N,A) :- term_to_atom(N,A).
edges_to_gterms(EL,GTerms,Opts) :-
findall(GT,(member(E,EL),
edge_to_gterm(E,GT,Opts)),
GTerms).
nodes_to_gterms(NL,GTerms,Opts) :-
findall(GT,(member(N,NL),
node_to_gterm(N,GT,Opts)),
GTerms).
desc_gterm(D,graph(g,[],GTerms)) :-
desc_edgeset(D,EL),
findall(GTerm,
( member(E,EL),
edge_gterm(E,GTerm)),
GTerms).
split_set(L1,L2,L3,L1_uniq,L2_uniq) :-
ord_intersection(L1,L2,L3),
ord_subtract(L1,L3,L1_uniq),
ord_subtract(L2,L3,L2_uniq).
d_pair_gterm(D1,D2,G,Opts) :-
desc_edgeset(D1,EL1),
desc_edgeset(D2,EL2),
append(EL1,EL2,EL_Union),
split_set(EL1,EL2,EL_Intersection,EL1_Uniq,EL2_Uniq),
edges_to_nodes(EL1,NL1),
edges_to_nodes(EL2,NL2),
append(NL1,NL2,NL_Union),
fill_edges(NL_Union,EL_Union,EL_Ont,Opts),
split_set(NL1,NL2,NL_Intersection,NL1_Uniq,NL2_Uniq),
edges_to_gterms(EL1_Uniq,EGTerms1,[color=red]),
edges_to_gterms(EL2_Uniq,EGTerms2,[color=blue]),
edges_to_gterms(EL_Intersection,EGTerms_Intersection,[color=green,penwidth=5,weight=50]),
edges_to_gterms(EL_Ont,EGTerms_Ont,[color=grey,style=dashed,weight=100]),
nodes_to_gterms(NL1_Uniq,NGTerms1,[color=red]),
nodes_to_gterms(NL2_Uniq,NGTerms2,[color=blue]),
nodes_to_gterms(NL_Intersection,NGTerms_Intersection,[fillcolor=green,style=filled]),
flatten([EGTerms1,EGTerms2,EGTerms_Intersection,EGTerms_Ont,
NGTerms1,NGTerms2,NGTerms_Intersection],GTerms),
gterms_add_ontol_links(NL_Union,graph(g,[],GTerms),G).
gterms_add_ontol_links(Nodes,graph(GN,GProps,GTermsIn),GOut) :-
findall(e(N,T,declaredIn),(member(N,Nodes),
node_ont(N,T)),
EL),
setof(O,N^member(e(N,O,declaredIn),EL),Onts),
nodes_to_gterms(Onts,NTerms,[]),
edges_to_gterms(EL,ETerms,[]),
flatten([NTerms,ETerms,GTermsIn],GTermsNew),
graph_nest(graph(GN,GProps,GTermsNew),GOut,[declaredIn]).
node_ont(N,O) :- ontologyAxiom(O,class(N)),!.
node_ont(_,'x').
fill_edges(_,_,[],Opts) :-
\+ member(fill_edges(true),Opts),
!.
fill_edges(Nodes,Edges,NewEdgesNR,_) :-
findall(e(S,T,R),
( member(S,Nodes),
member(T,Nodes),
S\=T,
\+ member(e(S,T,_),Edges),
\+ member(e(T,S,_),Edges),
class_ancestor_over(S,T,RL),
collapse_composite_edge_label(RL,R)),
NewEdges_1),
sort(NewEdges_1,NewEdges), % uniqify
append(Edges,NewEdges,AllEdges),
maplist(invert_edge,AllEdges,AllEdgesInv),
append(AllEdges,AllEdgesInv,AllEdgesSymm),
% TODO - more sophisticated redundancy checking
findall(E,
( member(E,NewEdges),
E=e(S,T,R),
\+ ((member(e(S,Z,R),AllEdgesSymm),
member(e(Z,T,R),AllEdgesSymm)
))),
NewEdgesNR).
invert_edge(e(S,T,R),e(T,S,inverseOf(R))).
collapse_composite_edge_label(RL,RC) :-
findall(Tok,(member(_-R,RL),sformat('~q',[R],Tok)),Toks),
reverse(Toks,RToks),
concat_atom(RToks,'->',RC).
/*
objs_gterm(OPairs,graph(g,[],GTerms)) :-
desc_edgeset(D,EL),
findall(GTerm,