forked from vangelisv/thea
-
Notifications
You must be signed in to change notification settings - Fork 3
/
owl2_to_prolog_dlp.pl
863 lines (666 loc) · 25.9 KB
/
owl2_to_prolog_dlp.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
/* -*- Mode: Prolog -*- */
:- module(owl2_to_prolog_dlp,
[
owl_write_all_dlpterms/0,
owl_write_all_dlpterms/1,
owl_dlpterm/2,
owl_dlpterm/3,
owl_write_dlpterm/2,
owl_write_prolog_code/2
]).
:- use_module(library(debug)).
:- use_module(library(solution_sequences)).
:- use_module(owl2_model).
:- use_module(owl2_from_rdf,[collapse_ns/4]).
%% closed_world_assumption
% if this is asserted, then the CWA will be used
% allValuesFrom/2 will be treated using negation.
% prolog makes the CWA so be sure this is the right thing.
% also may cause non-stratified negation in tabled prologs.
:- dynamic closed_world_assumption/0.
% USE WITH CAUTION
%closed_world_assumption.
:- multifile owl2_io:save_axioms_hook/3.
owl2_io:save_axioms_hook(File,dlp,Opts) :-
nonvar(File),
!,
setup_call_cleanup(
tell(File),
owl_write_all_dlpterms(Opts),
told).
owl2_io:save_axioms_hook(File,dlp_yap,Opts) :-
owl2_io:save_axioms_hook(File,dlp,[write_directives(table)|Opts]).
uri_to_atom(literal(type(_,A)),A) :- !.
uri_to_atom(URI,A) :-
collapse_ns(URI,A,':',[]).
%% owl_write_all_dlpterms
% as owl_write_all_dlpterms/1
owl_write_all_dlpterms :-
owl_write_all_dlpterms([]).
%% owl_write_all_dlpterms(+Opts:list)
% writes all axiom/1 as dlpterms on output stream using owl_write_dlpterm/2
owl_write_all_dlpterms(Opts) :-
forall(member(write_directives(Dir),Opts),
write_directives(Dir,Opts)),
setof(Ax,axiom(Ax),Axs),
forall(member(Ax,Axs),
owl_write_dlpterm(Ax,Opts)).
% we could also consider to use `:- style_check(-discontiguous).`
write_directives(discontiguous,_Opts) :-
format(':- discontiguous(~q/1).~n',['Thing']),
forall(distinct(class(C)),
write_discontiguous_class(C,Opts)),
forall(distinct(property(P)),
write_discontiguous_property(P,Opts)).
write_directives(table,Opts) :-
forall(distinct(class(C)),
write_table_class(C,Opts)),
forall(distinct(property(P)),
write_table_property(P,Opts)).
write_directives(dummy_fact,Opts) :-
forall(distinct(class(C)),
write_dummy_class(C,Opts)),
forall(distinct(property(P)),
write_dummy_property(P,Opts)).
write_table_class(X,Opts) :-
collapse_ns(X,X1,'_',Opts),
format(':- table ~q/1.~n',[X1]).
write_table_property(X,Opts) :-
collapse_ns(X,X1,'_',Opts),
format(':- table ~q/2.~n',[X1]).
write_dummy_class(X,Opts) :-
collapse_ns(X,X1,'_',Opts),
format('~q(_) :- fail.~n',[X1]).
write_dummy_property(X,Opts) :-
collapse_ns(X,X1,'_',Opts),
format('~q(_,_) :- fail.~n',[X1]).
write_discontiguous_class(X,Opts) :-
collapse_ns(X,X1,'_',Opts),
format(':- discontiguous(~q/1).~n',[X1]).
write_discontiguous_property(X,Opts) :-
collapse_ns(X,X1,'_',Opts),
format(':- discontiguous(~q/2).~n',[X1]).
%% owl_dlpterm(+OwlAsTerm,?DlpTerm)
owl_dlpterm(OwlAsTerm,R) :-
owl_as2prolog(OwlAsTerm,R,_).
%% owl_dlpterm(+OwlAsTerm,?DlpTerm,+Options:list)
% (Options currently ignored)
owl_dlpterm(OwlAsTerm,R,_) :-
owl_as2prolog(OwlAsTerm,R,_).
%% owl_write_dlpterm(+OwlAsTerm,+Options)
%
% Converts the prolog OWL abstract syntax term (as parsed by
% OWl parser) into prolog logic code, based on the mapping
% proposed by [Grosof] in the context of DLP. The prolog code
% is written into the current output stream, so
% redirecting the output stream into a file is suggested in order
% to capture the generated code. Options are generic options to
% modify the behaviour of the code generation. Currently only the
% no_base(Namespace) is supported. This option tells the code
% generator not to prefix the prolog predicates with the
% namespace prefix.
owl_write_dlpterm(OwlAsTerm,Options) :-
owl_as2prolog(OwlAsTerm,R,_),
format('% ~q ~n',[OwlAsTerm]),
owl_write_prolog_code(R,Options),
!.
owl_write_dlpterm(datatype(integer), _) :- !.
owl_write_dlpterm(datatype(decimal), _) :- !.
owl_write_dlpterm(datatype(float), _) :- !.
owl_write_dlpterm(datatype(string), _) :- !.
owl_write_dlpterm(OwlAsTerm,_) :-
throw(thea(cannot_write(OwlAsTerm))).
%% owl_write_prolog_code(+Term,+Options)
%
% Term is an intermediate format generated from the
% owl_as2prolog/3 predicate. This predicate handles the
% prolog code generation from this intermediate format
% into prolog code.
% For Options see the owl_as2prolog/2 predicate.
%
% Generate code for each item in the list.
%
owl_write_prolog_code([],_) :- !.
owl_write_prolog_code([H|T],Options) :- !,
\+ \+ ( number_shared_vars(H),
owl_write_prolog_code(H,Options)
),
owl_write_prolog_code(T,Options).
%
% Generate code for the or (;) prolog construct.
%
owl_write_prolog_code(;(A,B),Options) :- !,
write('('), owl_write_prolog_code(A,Options), write(';'),
owl_write_prolog_code(B,Options), write(')').
%
% Generate code for the and (;) prolog construct.
%
owl_write_prolog_code( (A,B), Options ) :- !,
owl_write_prolog_code(A,Options),
write(','),
owl_write_prolog_code(B,Options).
% we need this because variables may be repeated if there are multiple existential clauses
%owl_write_prolog_code(exists(A),Options) :- !,
% write('(\\+ \\+ ('), owl_write_prolog_code(A,Options), write(') )').
owl_write_prolog_code(\+ (\+ (A)),Options) :- !,
owl_write_prolog_code(A,Options).
owl_write_prolog_code(\+ (A),Options) :- !,
write('(\\+ ('), owl_write_prolog_code(A,Options), write(') )').
%
% Generate code for a prolog rule Head :- Body
%
owl_write_prolog_code( (class('owl:Nothing',_):- B), Options) :-
member(disjunctive_datalog(true),Options),
!,
write(':-'),
nl, write(' '),
owl_write_prolog_code(B,Options),
write('.'), nl.
owl_write_prolog_code( (class('owl:Nothing',_):- _), Options) :-
member(suppress_owl_nothing(true),Options),
!.
owl_write_prolog_code( ( ( H1; H2) :- B), Options) :- !,
( member(disjunctive_datalog(true),Options)
-> owl_write_prolog_head_disjunction((H1;H2),Options),
write(':-'),
nl, write(' '),
owl_write_prolog_code(B,Options),
write('.'), nl
; true).
owl_write_prolog_code( (H :- B), Options) :-!,
( H == false
-> true
; B == false
-> true
; H == []
-> true
; H = [_|_]
-> maplist(map_head_conjunction(B),H,R),
owl_write_prolog_code(R,Options) % rewrite rule (a,b) :- c ==> a :- c and b:-c
; H = (H1 :- H2)
-> owl_write_prolog_code((H1:-(H2,B)),Options) % rewrite rule a :- b) :- c ==> a :- b,c
; H = (_ ; _)
-> owl_write_prolog_head_disjunction(H,Options)
; B = none % It is a fact (no body).
-> owl_write_prolog_code(H,Options), write('.'), nl
; owl_write_prolog_code(H,Options), write(':-'), % normal rule H:-B.
nl, write(' '),
owl_write_prolog_code(B,Options),
write('.'), nl
).
%
% Generate code for a 'class' predicate: C(X) or C(individual).
%
owl_write_prolog_code(class(X,Y),Options) :- !,
collapse_ns(X,X1,'_',Options),
( var(Y) % see number_shared_vars/1
-> format('~q(X)', [X1])
; Y = '$VAR'(X)
-> assertion(\+ reserved_var(X)),
format('~q(~W)', [X1, Y, [numbervars(true)]])
; Y = x
-> writeq(X1), write('('), write('X'), write(')')
; Y = y
-> writeq(X1), write('('), write('Y'), write(')')
; Y=v(VY)
-> writeq(X1), write('('), write('V'),write(VY), write(')')
; uri_to_atom(Y,Y1),
writeq(X1), write('('), writeq(Y1), write(')')
).
%
% Generate code for a 'property' predicate: P(X,Y) or
% P(class,individual) or P(individual, individual).
%
owl_write_prolog_code(property(_,_,literal(_)),Options) :-
member(suppress_literals(true),Options),
write(true),
!.
owl_write_prolog_code(property(P,X,Y),Options) :- !,
collapse_ns(P,P1,'_',Options),
writeq(P1), write('('),
( X = x, !, write('X')
; X = y, !, write('Y')
; X = z, !, write('Z')
; X = v(NX), !, write('V'),write(NX)
; X = var , !, write('_')
; uri_to_atom(X,X1),
writeq(X1)
),
write(','),
( Y = x, !, write('X')
; Y = y, !, write('Y')
; Y = z, !, write('Z')
; Y = v(NY), !, write('V'),write(NY)
; Y = var , !, write('_')
; uri_to_atom(Y,Y1),
writeq(Y1)
),
write(')').
owl_write_prolog_code(swrlproperty(P,X,Y),Options) :- !,
collapse_ns(P,P1,'_',Options),collapse_ns(Y,Y1,'_',[no_base(_)]),collapse_ns(X,X1,'_',[no_base(_)]),
upcase_atom(X1,X2),
upcase_atom(Y1,Y2),
writeq(P1), write('('),
write(X2),
write(','),
write(Y2),
write(')').
owl_write_prolog_code(swrldescription(P,X),Options) :- !,
collapse_ns(P,P1,'_',Options),collapse_ns(X,X1,'_',[no_base(_)]),
upcase_atom(X1,X2),
writeq(P1), write('('),
write(X2),
write(')').
owl_write_prolog_code(v(NY),_Options) :- !,
write('V'),write(NY).
%
% none generates nothing.
%
owl_write_prolog_code(none,_Options) :- !.
owl_write_prolog_code(literal(type(_,Term)),_Options) :-
writeq(Term).
%
% otherwise generate the Term itself
%
owl_write_prolog_code(Term,_Options) :-
writeq(Term).
owl_write_prolog_head_disjunction((H1;H2),Options) :-
member(head_disjunction_symbol(Op),Options),
!,
owl_write_prolog_code(H1,Options),
write(' '),
write(Op),
write(' '),
owl_write_prolog_head_disjunction(H2,Options).
owl_write_prolog_head_disjunction(H,Options) :-
!,
owl_write_prolog_code(H,Options).
%! reserved_var(+N) is semidet.
%
% Used to verify that variables we generate using numbervars/3
% do not conflict with the hard-coded variable names.
reserved_var(21). % V
reserved_var(23). % X
reserved_var(24). % Y
%! number_shared_vars(+Term) is det.
%
% Number variables that appear multiple times. This is a work
% around for this code that uses a mixture of unshared variables
% and variable indicators such as `x`, `y`, etc. Eventually this
% should be removed, producing a proper Prolog term and using
% portray_clause/1 to write it.
number_shared_vars(Term) :-
copy_term(Term, Copy),
numbervars(Copy, 0, _, [singletons(true)]),
unbind_singletons(Copy, Copy2),
Copy2 = Term.
unbind_singletons('$VAR'('_'), _).
unbind_singletons(Term, Copy) :-
compound(Term), !,
Term =.. [Name|Args0],
maplist(unbind_singletons, Args0, Args),
Copy =.. [Name|Args].
unbind_singletons(Term, Term).
%
% used in case of conjunction in the head. Used in rewrite rule
%( a,b) :- c ==> a :- c and b:-c
%
map_head_conjunction(B,H, :-(H,B)).
%% owl_as2prolog(+OwlAsTerm, -ResultTerm, ?Mode)
%
% Predicate to convert a Thea prolog OWL abstract term into
% the intermediate term used for prolog (logic) code generation.
% The Mode is used to differentiate the convertion depending on
% wether the OWL construct appears in the head or in a body of a
% prolog rule. It can be on of head, body and fact.
%
% The mappings for the class descriptions are summarised in the
% following table for each mode.
%
% Description Head Body Fact
% -----------------------------------------------------------------
% intersectionOf a,b,c, +rewrite rule a,b,c -
% unionOf - a;b;c a. b. c.
% compl - - -
% one of -
% restr value p(ID,V) p(ID,V) p(ID,V)
% restr all C(Y):-P(X,Y),D(X) - C(Y):-P(ID,Y).
% restr some - C(X):-P(X,Y),D(Y) -
%
% Mode = head | body | fact
owl_as2prolog(class(_),none,_) :- !.
%
% A class with no description generates none (no code).
%
%owl_as2prolog(class(_,_,complete,_,[intersectionOf([])]),none,_) :- !.
owl_as2prolog(equivalentClasses([_]),none,_) :- !.
% this is illegal, but pass-through silently anyway
owl_as2prolog(equivalentClasses([]),none,_) :- !.
%
% A complete class declaration with a single descrption element is
% equivalent to this description
%
owl_as2prolog(equivalentClasses([C,D]),[R1,R2],_) :- !,
% equivalent
owl_as2prolog(subClassOf(C,D),R1,_),
owl_as2prolog(subClassOf(D,C),R2,_).
% more general form of above clause
owl_as2prolog(equivalentClasses(L),RL,_) :- !,
findall(R,
( member(C,L),
member(D,L),
C\=D,
owl_as2prolog(subclassOf(C,D),R,_)),
RL).
owl_as2prolog(disjointClasses(L),RL,_) :- !,
findall(R,
( member(C,L),
member(D,L),
C@<D,
owl_as2prolog(subClassOf(intersectionOf([C,D]),'owl:Nothing'),R,_)),
RL).
owl_as2prolog(differentIndividuals(_),none,_) :- !.
%
% Subclass(Class,Superclass) ==> C(X) implies S(X) or S(X) :- C(X).
%
owl_as2prolog(subClassOf(A,B),R,_) :-
owl_as2prolog(description(A,X),Rb,body),
owl_as2prolog(description(B,X),Rh,head),
!,
R = (:-(Rh,Rb)).
%
% Intersection of descriptions does not generate anything in fact mode.
%
owl_as2prolog(description(intersectionOf(_),_),false,fact):- !.
% TODO: introduced in OWL2
owl_as2prolog(description(hasSelf(_),_),false,fact):- !.
%
% Intersection of descriptions generates a comma separated list of
% descriptions in either head or body modes.
%
owl_as2prolog(description(intersectionOf(DL),X),R,Param):- !,
owl_as2prolog(description_list(DL,X,','),R,Param).
%
% Union (use of Or) cannot be handled in the head of a rule in prolog.
% However, we allow the possibility of translation to extensions such as disjunctive datalog.
% Here we create a prolog term with a disjunction in the head; it is up to the prolog writing
% part whether to exclude this or not
%
%owl_as2prolog(description(unionOf(_),_),false,head):-!.
owl_as2prolog(description(unionOf(DL),X),R,head):-!,
owl_as2prolog(description_list(DL,X,';'),R,body). % hacky-trick to treat head as body for disjunctions
%
% Union generates ; separated terms.
%
owl_as2prolog(description(unionOf(DL),X),R,body):-!,
owl_as2prolog(description_list(DL,X,';'),R,body).
owl_as2prolog(description(unionOf(DL),X),R,fact):-!,
owl_as2prolog(description_list(DL,X,';'),R,fact).
%
% Complement of (Not) is not handled in this conversion
% unless CWA is set
owl_as2prolog(description(complementOf(D),X),(\+ R),body) :-
closed_world_assumption,
owl_as2prolog(description(D,X),R,body),
!.
% TODO: add hook for LP engines that support negation..
% but be careful re open/closed world
owl_as2prolog(description(complementOf(_),_),false,_) :- !.
%
% OneOf is handled with membership only in body of rules.
%
owl_as2prolog(description(oneOf(DL),X),member(X,DL),body) :- !.
owl_as2prolog(description(oneOf(_),_),false,_) :- !.
%
% Value property description generates a property term (predicate)
%
owl_as2prolog(description(hasValue(PropertyID,Value),X),R,_) :-
R = property(PropertyID,X,Value),!.
%
% Universal property description. See table above
%
% TODO: CWA
owl_as2prolog(description(allValuesFrom(PropertyID,Descr),_),R,body) :-
closed_world_assumption,
!,
owl_as2prolog(description(Descr,y),D,body),
R = (\+ (property(PropertyID,x,y),\+ D)).
owl_as2prolog(description(allValuesFrom(_,_),_),false,body) :- !.
%owl_as2prolog(description(restriction(_,allValuesFrom(_)),_),false,body) :- !.
owl_as2prolog(description(allValuesFrom(PropertyID,Descr),_),R,head) :- !,
owl_as2prolog(description(Descr,y),D,head),
R = :-(D,property(PropertyID,x,y)).
owl_as2prolog(description(allValuesFrom(PropertyID,Descr),ID),R,fact) :- !,
owl_as2prolog(description(Descr,_),D,head),
R = :-(D,property(PropertyID,ID,x)).
%
% Existential property description. See table above
%
owl_as2prolog(description(someValuesFrom(_,_),_),false,head) :- !.
owl_as2prolog(description(someValuesFrom(PropertyID,Descr),_),R,body) :- !,
gensym('Ex_',ExV),
owl_as2prolog(description(Descr,v(ExV)),D,body),
R = (D,property(PropertyID,x,v(ExV))).
% R = exists((D,property(PropertyID,x,y))).
%
% Cardinalities are not handled in this conversion
%
owl_as2prolog(description(maxCardinality(_,_),_),false,_) :- !.
owl_as2prolog(description(minCardinality(_,_),_),false,_) :- !.
owl_as2prolog(description(exactCardinality(_,_),_),false,_) :- !.
% QCRs: added in OWL2
owl_as2prolog(description(maxCardinality(_,_,_),_),false,_) :- !.
owl_as2prolog(description(minCardinality(_,_,_),_),false,_) :- !.
owl_as2prolog(description(exactCardinality(_,_,_),_),false,_) :- !.
%
% Any other description is taken to be a named class
%
owl_as2prolog(description(Any,X),class(Any,X),_) :- !.
%
% Handling of description lists in head and bodies of rules
%
owl_as2prolog(description_list([],_,_),[],_) :- !.
owl_as2prolog(description_list([Descr],X,_),R,body) :- !,
owl_as2prolog(description(Descr,X),R,body).
owl_as2prolog(description_list([Descr|Rest],X,Separator),T,Param) :-
owl_as2prolog(description(Descr,X),H,Param),!,
owl_as2prolog(description_list(Rest,X,Separator),Tail,Param),
( Param = body , ! ,
(H = false, !, T = [false] ; Tail = false, !, T = false
;
T =.. [Separator,H,Tail]
) ;
T = [H|Tail]
).
%
% Mapping properties.
% a. Generate a s(X,Y) :- p(X,Y). for each super property p
% b. Generate a C(X) :- P(X,Y) for each C in the property domain
% c. Generate a c(Y) :- p(X,Y) for each range C
% d. Handle property attributes in process_pt_list predicate
%
% TODO: property expressions - inverseOf, propertyChain; other places e.g. inverseProperties
%owl_as2prolog(subPropertyOf(P,inverseOf(SuperP)),(property(SuperP,y,x) :- property(P,x,y)),_).
%owl_as2prolog(subPropertyOf(inverseOf(P),SuperP),(property(SuperP,x,y) :- property(P,y,x)),_).
%owl_as2prolog(subPropertyOf(P,SuperP),(property(SuperP,x,y) :- property(P,x,y)),_).
owl_as2prolog(subPropertyOf(P,SuperP),(SPE :- PE),_) :- !,
owl_as2prolog(propertyExpression(P),PE,head),
owl_as2prolog(propertyExpression(SuperP),SPE,body).
owl_as2prolog(propertyExpression(inverseOf(P)),property(P,y,x), _) :- !.
%owl_as2prolog(propertyExpression(propertyChain([P1,P2])),(property(P1,x,z),property(P2,z,y)), _) :- !.
owl_as2prolog(propertyExpression(propertyChain(PL)),ChainGoal, _) :-
chain_to_goal(PL,ChainGoal).
owl_as2prolog(propertyExpression(P),property(P,x,y), _) :- !.
owl_as2prolog(propertyDomain(P,D),(L :- property(P,X,var)), _) :- !,
map_description(head,X,D,L).
owl_as2prolog(propertyRange(P,D),(L :- property(P,var,X)), _) :- !,
map_description(head,X,D,L).
owl_as2prolog(disjointProperties(L),RL,_) :- !,
findall( ('owl:Nothing'(X) :- property(C,X,Y),property(D,X,Y)),
( member(C,L),
member(D,L),
C@<D),
RL).
owl_as2prolog(objectProperty(_),[],_) :- !.
owl_as2prolog(dataProperty(_),[],_) :- !.
owl_as2prolog(annotationProperty(_),[],_) :- !.
%
% Mapping individuals
% a. Generate a C(ID) for each desccription C in the Types list
% b. Generate a p(ID,Value) for each value declaration in the Property
% list.
%
owl_as2prolog(classAssertion(C,I),L,_) :- !,
map_description(fact,I,C,L).
owl_as2prolog(propertyAssertion(P,I,J), :-(property(P,I,J),none),_) :- !.
% TODO: ASP and variants only
% owl_as2prolog(negativePropertyAssertion(P,I,J), :-(false,property(P,I,J),_) :- !.
owl_as2prolog(owl(_,_,_,_),[],_) :- !.
owl_as2prolog(ontology(_),[],_) :- !.
owl_as2prolog(annotationAssertion(_,_,_), [], _) :- !.
owl_as2prolog(namedIndividual(_), [], _) :- !.
%
% Mappings generated from the attributes of a property.
% a. Functional and inverse functionals generate a
% sameIndividuals(X,Y) :- p(Z,X), P(Z,Y)
% Transitive: p(X,Z) :- p(X,Y), p(Y,Z).
% Symmetric: p(X,Y) :- p(Y,X).
% Inverse : p(X,Y) :- inv(Y,X) and inv(X,Y) :- p(Y,X).
%
owl_as2prolog(functionalProperty(P), (property(sameIndividuals,x,y) :- (property(P,z,x),property(P,z,y))),_) :- !.
owl_as2prolog(inverseFunctionalProperty(P), (property(sameIndividuals,x,y) :- (property(P,z,x),property(P,z,y))),_) :- !.
owl_as2prolog(transitiveProperty(P), (property(P,x,y) :- (property(P,x,z),property(P,z,y))),_) :- !.
owl_as2prolog(symmetricProperty(P), (property(P,x,y) :- property(P,y,x)),_) :- !.
owl_as2prolog(reflexiveProperty(P), (property(P,x,x) :- property(P,x,y)),_) :- !. % TODO -- check
%owl_as2prolog(inverseProperties(P,Inv),[(property(P,x,y) :- property(Inv,y,x)),
% (property(Inv,x,y) :- property(P,y,x))],_) :- !.
owl_as2prolog(inverseProperties(P,inverseOf(P)),none,_) :- !. % REDUNDANT - do nothing
owl_as2prolog(inverseProperties(inverseOf(P),P),none,_) :- !. % REDUNDANT - do nothing
owl_as2prolog(inverseProperties(P,Inv),[(PE :- IPE),(IPE2 :- PE2)], _) :- !,
owl_as2prolog(propertyExpression(P),PE,head),
owl_as2prolog(propertyExpression(inverseOf(Inv)),IPE,body),
owl_as2prolog(propertyExpression(inverseOf(P)),PE2,body),
owl_as2prolog(propertyExpression(Inv),IPE2,head).
% TODO: new OWL2 properties
% SWRL
% (should this go in a separate hooks module?)
owl_as2prolog(implies(A,C),(CP :- AP), _) :- !,
owl_as2prolog(swrl(A),AP,body),
owl_as2prolog(swrl(C),CP,head).
owl_as2prolog(swrl([]), true, _Type) :- !.
owl_as2prolog(swrl([A]), G, Type) :-
!,
owl_as2prolog(swrl(A),G,Type). % TODO: body list
owl_as2prolog(swrl([A|AL]), (G,Gs), Type) :-
!,
owl_as2prolog(swrl(A),G,Type),
owl_as2prolog(swrl(AL),Gs,Type).
owl_as2prolog(swrl(description(C,X)),class(C,PX), Type) :-
!,
owl_as2prolog(swrl(X),PX,Type).
owl_as2prolog(swrl(propertyAssertion(P,X,Y)),property(P,PX,PY), Type) :-
!,
owl_as2prolog(swrl(X),PX,Type),
owl_as2prolog(swrl(Y),PY,Type).
owl_as2prolog(swrl(builtin(B,Args)),G, Type) :-
!,
swrl:pred_swrlb(P,B),
findall(AP,(member(A,Args),
owl_as2prolog(swrl(A),AP,Type)),
ArgsP),
G=..[property,P|ArgsP]. % TODO - n-ary properties
owl_as2prolog(swrl(A),property(P,PX,PY), Type) :-
A=..[P,X,Y],
!,
owl_as2prolog(swrl(X),PX,Type),
owl_as2prolog(swrl(Y),PY,Type).
owl_as2prolog(swrl(i(V)),v(V),_) :- !.
owl_as2prolog(swrl(A),G,T) :-
owl_as2prolog(A,G,T).
% propertyChains
chain_to_goal(PL,ChainGoal) :-
chain_to_goal(PL,x,v(1),ChainGoal).
chain_to_goal([P],V,_,Goal) :-
!,
( P=inverseOf(PI)
-> Goal=property(PI,y,V)
; Goal=property(P,V,y)).
chain_to_goal([P|PL],V,VN,(Goal,ChainGoal)) :-
!,
( P=inverseOf(PI)
-> Goal=property(PI,VN,V)
; Goal=property(P,V,VN)),
VN=v(N),
NPlus1 is N+1,
chain_to_goal(PL,VN,v(NPlus1),ChainGoal).
%
% Mapping functions (Perform convert operations on each element in a
% list).
%
map_description(fact,X,Description,:-(DMap,none)) :- !,
owl_as2prolog(description(Description,X),DMap,fact).
map_description(Type,X,Description,DMap) :- !,
owl_as2prolog(description(Description,X),DMap,Type).
% TODO
/** <module> generates logic programs from OWL2 ontologies
---+ Synopsis
Type the following in a prolog session:
==
use_module(library(thea2/owl_io)).
load_axioms('myont.owl').
save_axioms('myont.pl',dlp).
==
---+ Details
This submodule converts an OWL ontology represented as OWL abstract
syntax terms into a Prolog program. The mapping implements the idea
of Description Logic Programs [Grossof]. Similar work has been also
done in the dlpconvert tool.
---++ Invocation
You should not need to import this module directly. Instead, import
owl2_io and use save_axioms/3. This module contains hooks that are invoked whenever the output format is one of:
* dlp
* dlp_yap
---++ Example
An ontology which contains the axioms:
==
subClassOf(cat, mammal).
classAssertion(cat, mr_whiskers).
inverseProperties(likes,liked_by).
==
will be converted to a program such as:
==
mammal(X) :- cat(X).
cat(mr_whiskers).
likes(X,Y) :- liked_by(Y,X).
liked_by(X,Y) :- likes(Y,X).
==
You can then consult this program from within a prolog engine and ask questions such as
==
?- mammal(X).
X = mr_whiskers
==
Note that you should use a table prolog such as Yap, XSB or B-Prolog
---++ Options
The following options can be passed in to save_axioms/3
* disjunctive_datalog(DDL:boolean) - if true, will write rules in which head contains disjunctions
* head_disjunction_symbol(Op:atom) - if true, and if disjunctive_datalog(true) then writes disjunctive head rules using Op as separator. For DLV, set Op='v'
* write_directives(table) - if true, this will write tabling directives. This is set automatically if the output format is dlp_yap
---++ Comparison with other ways of Reasoning in Thea2
See Reasoning-using-Thea.txt
One unsatisfactory aspect of this approach is that you can't reason
from within a Thea session. You have to use SWI-Prolog and Thea to
generate the logic program, and then start a new session with
XSB/Yap/etc and perform queries there. In the future this may be
resolved in two ways:
* You will soon hopefully be able to use Yap directly from XSB or Yap,
and thus be able to generate the logic program and query it in the
same session. (See prolog-compatibility.txt)
* You may be able to call Yap or XSB from within an SWI prolog Thea
session.
There are also hooks for answer set programming and disjunctive
datalog systems such as DLV.
---++ Changes from Thea1
This extends Thea1 and the original Grossof rules to allow for certain
OWL2 features, currently limited to property expressions (inverse
properties and role chains)
*/