This is the official training code for the models presented in the Science Robotics paper: A seasonally invariant deep transform for visual terrain-relative navigation
We will work with a toy dataset of raw orthorectified image pairs stored in data/coregistered_images
.
Create a python3 anaconda environment and use the requirements.txt
file provided. Install any still-missing packages as needed.
pip3 install -r requirements.txt
To create the training dataset, run
python createTiledDataset.py --raw_data_dir=data/coregistered_images/off --save_data_dir=data/training_pairs/off --overlap_ratio=0 --crop_width=600 --crop_height 600
python createTiledDataset.py --raw_data_dir=data/coregistered_images/on --save_data_dir=data/training_pairs/on --overlap_ratio=0 --crop_width=600 --crop_height 600
To train a deep image transform to optimize downstream image registration based on normalized cross-correlation (NCC), run
### Just as an example, use training dataset for validation
python siamese-ncc.py --exp_name=correlation-toy-example --training_data_dir=data/training_pairs/ --validation_data_dir=data/training_pairs/ --batch-size=4 --epochs=100 --device=0 --num_workers=4
Perform inference using the learned weights on a sample image via
python siamese-inference.py --data_dir data/samples/fakeplaceid_fakequad_000015_on.png --output_dir correlation-toy-example/sample-outputs --weights_path correlation-toy-example/weights/best_test_weights.pt
To optimize the image transform for a feature matching registration objective, run
python siamese-sift.py --exp_name sift-toy-example --training_data_dir=data/training_pairs/ --validation_data_dir=data/training_pairs/ --subsamples=100 --crop_width=64 --batch-size=2 --zeta=10 --gamma=1 --epochs=100
- Training a NCC-optimized image transform should not be difficult.
- The feature-based transform is harder to train, and may require some hyperparameter tuning and loss balancing depending on your dataset (tip: start with just the detector loss and add in descriptor loss in small amounts if needed).
- For both transforms, the appearance of the transformed images may vary, depending on the characteristics (size, terrain variety, etc...) of the dataset used during training.
Store your coregistered dataset under a directory structure like so
RAW_DATA_ROOT/
on/
image1.png
image2.png
...
imageN.png
off/
image1.png
image2.png
...
imageN.png
If the images are very large, then process then into smaller crops via createTiledDataset.py
.
If you find our code or paper useful, please consider citing our paper:
@article{fragoso2021seasonally,
title={A seasonally invariant deep transform for visual terrain-relative navigation},
author={Fragoso, Anthony T and Lee, Connor T and McCoy, Austin S and Chung, Soon-Jo},
journal={Science Robotics},
volume={6},
number={55},
pages={eabf3320},
year={2021},
publisher={American Association for the Advancement of Science}
}
Our U-Net code is based on Pytorch-UNet.