-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathbirthday.v
315 lines (288 loc) · 9.15 KB
/
birthday.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
(*
MIT License
Copyright (c) 2017 Jean-Marie Madiot, INRIA
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*)
Require Import Arith.
Require Import ZArith.
Require Import List.
Require Import Lia.
Import ListNotations.
Fixpoint appears x l :=
match l with
| [] => false
| y :: l => if Nat.eqb x y then true else appears x l
end.
Fixpoint collision l :=
match l with
| [] => false
| x :: l => if appears x l then true else collision l
end.
Fixpoint enumerate n :=
match n with
| 0 => []
| S n => n :: enumerate n
end.
Lemma length_enumerate n : length (enumerate n) = n.
Proof.
induction n; simpl; congruence.
Qed.
Lemma filter_app {A} f (l1 l2 : list A) :
filter f (l1 ++ l2) = filter f l1 ++ filter f l2.
Proof.
induction l1 as [| a l IHl]; simpl. reflexivity.
destruct (f a); simpl; congruence.
Qed.
Fixpoint cartesian_product {A B} (xs : list A) (ys : list B) : list (A * B) :=
match xs with
| [] => []
| x :: xs => map (pair x) ys ++ cartesian_product xs ys
end.
Fixpoint picks {A} n (l : list A) : list (list A) :=
match n with
| O => [[]]
| S n => map (fun x => fst x :: snd x) (cartesian_product l (picks n l))
end.
Lemma length_cartesian_product {A B} (xs : list A) (ys : list B) :
length (cartesian_product xs ys) = length xs * length ys.
Proof.
induction xs. reflexivity. simpl.
rewrite app_length, map_length. congruence.
Qed.
Lemma Zlength_picks {A} n (l : list A) :
Zlength (picks n l) = Z.pow (Zlength l) (Z.of_nat n).
Proof.
rewrite Zlength_correct.
induction n. reflexivity. simpl (length _).
rewrite map_length, length_cartesian_product.
change (S n) with (1 + n).
rewrite Nat2Z.inj_add, Z.pow_add_r, Z.pow_1_r.
rewrite <-IHn.
rewrite Nat2Z.inj_mul, Zlength_correct.
reflexivity.
all: zify; lia.
Qed.
Fixpoint partial_fact k n (* = n! / (n-k)! *) :=
(match k with
| O => 1
| S k => n * partial_fact k (n - 1)
end)%Z.
Definition no {A} (f : A -> bool) x := negb (f x).
Lemma cartesian_product_filters {A B} (f : A -> bool) (g : B -> bool) xs ys :
cartesian_product (filter f xs) (filter g ys) =
filter (fun p => andb (f (fst p)) (g (snd p))) (cartesian_product xs ys).
Proof.
revert ys.
induction xs; intros ys; auto.
simpl.
rewrite filter_app.
rewrite <-IHxs.
destruct (f a) eqn:Ha.
- simpl. f_equal.
clear -Ha.
induction ys as [| b ys IHys]; auto.
simpl. destruct (f a), (g b); simpl; congruence.
- rewrite IHxs.
match goal with |- ?a = _ => transitivity ([] ++ a) end. reflexivity.
f_equal.
induction ys as [| b ys IHys]; auto.
simpl. destruct (f a), (g b); simpl; try congruence.
Qed.
Lemma picks_remove k a l :
picks k (filter (no (Nat.eqb a)) l) =
filter (no (appears a)) (picks k l).
Proof.
induction k. reflexivity.
simpl. rewrite IHk. clear IHk.
generalize (picks k l); intros ll.
rewrite cartesian_product_filters.
induction (cartesian_product l ll) as [| a0 l0 IHl0]. simpl. reflexivity.
simpl.
rewrite <-IHl0.
unfold no.
simpl.
destruct (a =? fst a0). reflexivity.
simpl.
destruct (appears a (snd a0)); reflexivity.
Qed.
Lemma appears_filter x l f :
appears x l = false -> appears x (filter f l) = false.
Proof.
induction l. reflexivity.
simpl.
destruct (f a); simpl; destruct (x =? a); auto.
discriminate.
Qed.
Lemma collision_filter l f :
collision l = false -> collision (filter f l) = false.
Proof.
induction l. reflexivity.
simpl.
destruct (appears a l) eqn:E1. discriminate.
intros E2.
destruct (f a). simpl in *. rewrite appears_filter; auto.
auto.
Qed.
Lemma collision_count l :
collision l = false -> Forall (fun x1 : nat => count_occ Nat.eq_dec l x1 = 1) l.
Proof.
change (collision ([] ++ l) = false -> Forall (fun x1 : nat => count_occ Nat.eq_dec ([] ++ l) x1 = 1) l).
generalize ([] : list nat).
induction l; intros pre Hcol. constructor.
constructor.
- clear -Hcol.
induction pre as [| b pre IHpre].
+ simpl in *.
destruct (Nat.eq_dec a a) as [ _ | ]; [ | tauto ].
f_equal.
destruct (appears a l) eqn:Ha. discriminate. clear Hcol.
induction l as [|b l IHl]. reflexivity. simpl.
destruct (Nat.eq_dec b a).
* subst. simpl in Ha. rewrite Nat.eqb_refl in Ha. discriminate.
* apply IHl. simpl in Ha. destruct (a =? b); auto; discriminate.
+ simpl in *.
destruct (appears b (pre ++ a :: l)) eqn:Eb. discriminate.
rewrite IHpre; auto.
destruct (Nat.eq_dec b a); auto. subst.
cut (appears a (pre ++ a :: l) = true). congruence. clear.
induction pre as [|b pre IHpre]. simpl. rewrite Nat.eqb_refl. reflexivity.
simpl. destruct (a =? b); auto.
- assert (E : pre ++ a :: l = (pre ++ a :: nil) ++ l).
{ rewrite <-app_assoc. reflexivity. }
rewrite E. apply IHl. congruence.
Qed.
Lemma length_no_collision_picks k l :
collision l = false ->
Zlength (filter (no collision) (picks k l)) =
partial_fact k (Zlength l).
Proof.
rewrite Zlength_correct.
revert l; induction k; intros l Hcol. reflexivity.
simpl.
set (l1 := l) at 1 3.
assert (Huniq : Forall (fun x1 => count_occ Nat.eq_dec l x1 = 1) l1).
{ apply collision_count; auto. }
clearbody l1.
induction l1 as [| a l1 IHl1]. reflexivity.
simpl.
rewrite map_app, filter_app, app_length.
rewrite Zlength_cons, Z.mul_succ_l, Nat2Z.inj_add.
rewrite Z.add_comm. f_equal.
- rewrite IHl1. auto.
inversion Huniq; auto.
- clear IHl1.
rewrite map_map. simpl.
pose (l' := filter (no (Nat.eqb a)) l).
assert (El' : Zlength l' = (Zlength l - 1)%Z).
{
apply Forall_inv in Huniq.
cut (Zlength l' + 1 = Zlength l)%Z.
{ intros <-. lia. }
unfold l'.
do 2 rewrite Zlength_correct.
change 1%Z with (Z.of_nat 1).
rewrite <-Nat2Z.inj_add.
f_equal.
rewrite <-Huniq.
clear IHk k Hcol l' Huniq.
induction l as [| b l IHl]. reflexivity. simpl.
rewrite <-IHl.
unfold no.
destruct (Nat.eq_dec b a).
- subst. rewrite Nat.eqb_refl. simpl. lia.
- replace (a =? b) with false; simpl. reflexivity.
symmetry. apply Nat.eqb_neq. auto.
}
assert (Hl' : collision l' = false).
{
unfold l'. generalize (no (Nat.eqb a)); intros f.
clear -Hcol.
apply collision_filter; auto.
}
rewrite <-El'.
rewrite <-IHk; auto.
f_equal.
transitivity (length (map (fun x => a :: x) (filter (no collision) (picks k l')))).
2: rewrite map_length; reflexivity.
f_equal.
unfold l'.
apply Forall_inv in Huniq.
clear IHk El' l' Hl' l1.
rewrite picks_remove.
induction (picks k l) as [| l' ll' IHll']. reflexivity.
simpl.
unfold no at 1 5.
simpl.
destruct (appears a l'). simpl; congruence.
simpl.
unfold no at 3.
destruct (collision l'); simpl; congruence.
Qed.
Lemma length_filter {A} (f : A -> bool) l :
length (filter f l) + length (filter (no f) l) = length l.
Proof.
unfold no.
induction l; auto. simpl.
destruct (f a); simpl; lia.
Qed.
Lemma Zlength_filter {A} (f : A -> bool) l :
(Zlength (filter f l) = Zlength l - Zlength (filter (no f) l))%Z.
Proof.
repeat rewrite Zlength_correct.
rewrite <-(length_filter f l).
zify. lia.
Qed.
Lemma enumerate_no_collisions n : collision (enumerate n) = false.
Proof.
induction n. reflexivity. simpl. rewrite IHn.
cut (forall a b, a <= b -> appears b (enumerate a) = false).
{ intros ->; auto. }
clear.
intros a. induction a; intros b Hb.
- reflexivity.
- simpl. rewrite IHa. 2:lia.
replace (b =? a) with false; auto.
symmetry.
apply Nat.eqb_neq.
lia.
Qed.
Theorem birthday_paradox :
let l := picks 23 (enumerate 365) in
2 * length (filter collision l) > length l.
Proof.
intros l; unfold l.
apply Nat2Z.inj_lt.
rewrite Nat2Z.inj_mul.
repeat rewrite <-Zlength_correct.
rewrite Zlength_filter.
rewrite length_no_collision_picks. 2:apply enumerate_no_collisions.
repeat rewrite Zlength_picks.
reflexivity.
Qed.
Theorem birthday_paradox_min :
let l := picks 22 (enumerate 365) in
2 * length (filter collision l) < length l.
Proof.
intros l; unfold l.
apply Nat2Z.inj_lt.
rewrite Nat2Z.inj_mul.
repeat rewrite <-Zlength_correct.
rewrite Zlength_filter.
rewrite length_no_collision_picks. 2:apply enumerate_no_collisions.
repeat rewrite Zlength_picks.
reflexivity.
Qed.