-
Notifications
You must be signed in to change notification settings - Fork 1
/
elligator.go
154 lines (124 loc) · 3.67 KB
/
elligator.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
package ed448
// This function runs Elligator2 on the decaf Jacobi quartic model. It then
// uses the isogeny to put the result in twisted Edwards form. As a result,
// it is safe (cannot produce points of order 4), and would be compatible with
// hypothetical other implementations of Decaf using a Montgomery or untwisted
// Edwards model.
// This function isn't quite indifferentiable from a random oracle.
// However, it is suitable for many protocols, including SPEKE and SPAKE2 EE.
// Furthermore, calling it twice with independent seeds and adding the results
// is indifferentiable from a random oracle.
func pointFromNonUniformHash(ser [56]byte) *twExtendedPoint {
r0, r, a, b, c, n, e := &bigNumber{}, &bigNumber{}, &bigNumber{}, &bigNumber{}, &bigNumber{}, &bigNumber{}, &bigNumber{}
p := &twExtendedPoint{
x: new(bigNumber),
y: new(bigNumber),
z: new(bigNumber),
t: new(bigNumber),
}
mask := uint(0xfe << 7)
dsaLikeDeserialize(r0, ser[:], mask)
r0.strongReduce()
a.square(r0) //r^2
r.sub(bigZero, a)
// From Decaf paper
// Compute D2 := (dr+a-d)(dr-ar-d) with a=1
a.sub(r, bigOne)
b.mulWSignedCurveConstant(a, edwardsD) // (d * r) - d
a.add(b, bigOne)
b.sub(b, r)
c.mul(a, b)
// compute N := (r+1)(a-2d)
a.add(r, bigOne)
n.mulWSignedCurveConstant(a, 1-2*edwardsD)
// e = +-sqrt(1/ND) or +-r0 * sqrt(qnr/ND)
a.mul(c, n)
square := b.isr(a)
c = constantTimeSelect(bigOne, r0, square) // r? = isSquare ? 1 : r0
e.mul(b, c)
// s2 = +- |N . e|
a.mul(n, e)
a.decafCondNegate(lowBit(a) ^ ^square) // NB
// t2 = -+ cN(r - 1)((a - (2 * d))e)^ 2 - 1
c.mulWSignedCurveConstant(e, 1-2*edwardsD) // ( a - (2 * d))e
b.square(c)
e.sub(r, bigOne)
c.mul(b, e)
b.mul(c, n)
b.decafCondNegate(square)
b.sub(b, bigOne)
// isogenize
c.square(a) // s^2
a.add(a, a) // 2s
e.add(c, bigOne)
p.t.mul(a, e) // 2s(1+s^2)
p.x.mul(a, b) // 2st
a.sub(bigOne, c)
p.y.mul(e, a) // (1+s^2)(1-s^2)
p.z.mul(a, b) // (1-s^2)t
if !p.isOnCurve() {
return nil
}
return p
}
func pointFromUniformHash(ser [112]byte) *twExtendedPoint {
var ser1 [56]byte
var ser2 [56]byte
copy(ser1[:], ser[:56])
copy(ser2[:], ser[56:])
p := pointFromNonUniformHash(ser1)
q := pointFromNonUniformHash(ser2)
r := &twExtendedPoint{
&bigNumber{},
&bigNumber{},
&bigNumber{},
&bigNumber{},
}
r.add(p, q)
return r
}
func invertElligatorNonUniform(p *twExtendedPoint, hint word) ([56]byte, bool) {
sgnS := word(-(hint & 1))
sgnAltX := word(-((hint >> 1) & 1))
sgnR0 := word(-((hint >> 2) & 1))
a, b := &bigNumber{}, &bigNumber{}
c := p.deisogenizeNew(a, b, sgnS, sgnAltX)
isIdentity := p.t.decafEq(bigZero)
a.decafConstTimeSel(a, bigOne, isIdentity&sgnAltX)
b.decafConstTimeSel(b, bigOne, isIdentity&sgnS&(^sgnAltX))
c.mulWSignedCurveConstant(a, edwardsD-1)
a.add(c, a)
c.sub(c, b)
a.add(a, b)
c.conditionalSwap(a, sgnS)
b.sub(bigZero, a)
a.mul(b, c)
succ := b.isr(a)
succ |= a.decafEq(bigZero)
a.mul(b, c)
a.decafCondNegate(sgnR0 ^ lowBit(a))
// Eliminate duplicate values for identity
succ &= ^(a.decafEq(bigZero)&sgnR0 | sgnS)
var dst [56]byte
dsaLikeSerialize(dst[:], a)
return dst, true
// TODO: check: recovered_hash[SER_BYTES-1] ^= (hint>>3)<<0;
// return goldilocks_succeed_if(mask_to_bool(succ));
//return dst, false
}
func invertElligatorUniform(src [112]byte, p *twExtendedPoint, hint word) ([112]byte, bool) {
p2 := &twExtendedPoint{}
var partialHash, partialHash2 [56]byte
var ok bool
var dst [112]byte
copy(partialHash[:], src[56:])
p2 = pointFromNonUniformHash(partialHash)
p2.sub(p, p2)
partialHash2, ok = invertElligatorNonUniform(p2, hint)
if !ok {
return dst, false
}
copy(dst[56:], partialHash[:])
copy(dst[:56], partialHash2[:])
return dst, true
}