-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtrain.lua
441 lines (397 loc) · 18.7 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
--[[
This file trains a character-level multi-layer RNN on text data
Code is based on implementation in
https://github.com/oxford-cs-ml-2015/practical6
but modified to have multi-layer support, GPU support, as well as
many other common model/optimization bells and whistles.
The practical6 code is in turn based on
https://github.com/wojciechz/learning_to_execute
which is turn based on other stuff in Torch, etc... (long lineage)
]]--
require 'torch'
require 'nn'
require 'nngraph'
require 'optim'
require 'lfs'
require 'cudnn'
require 'util.OneHot'
require 'util.misc'
local CharSplitLMMinibatchLoader = require 'util.CharSplitLMMinibatchLoader'
local model_utils = require 'util.model_utils'
local LSTM = require 'model.LSTM'
local GridLSTM = require 'model.GridLSTM'
local GRU = require 'model.GRU'
local RNN = require 'model.RNN'
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train a character-level language model')
cmd:text()
cmd:text('Options')
-- data
cmd:option('-data_dir','data/tinyshakespeare','data directory. Should contain the file input.txt with input data')
-- task params
cmd:option('-task', 'char', 'task to train on: char, addition')
cmd:option('-digit_length', 4, 'length of the digits to add for the addition task')
-- model params
cmd:option('-rnn_size', 128, 'size of LSTM internal state')
cmd:option('-num_layers', 2, 'number of layers in the LSTM')
cmd:option('-model', 'lstm', 'lstm, grid_lstm, gru, or rnn')
cmd:option('-tie_weights', 1, 'tie grid lstm weights?')
-- optimization
cmd:option('-learning_rate',2e-3,'learning rate')
cmd:option('-learning_rate_decay',0.97,'learning rate decay')
cmd:option('-learning_rate_decay_after',10,'in number of epochs, when to start decaying the learning rate')
cmd:option('-decay_rate',0.95,'decay rate for rmsprop')
cmd:option('-dropout',0,'dropout for regularization, used after each RNN hidden layer. 0 = no dropout')
cmd:option('-seq_length',50,'number of timesteps to unroll for')
cmd:option('-batch_size',50,'number of sequences to train on in parallel')
cmd:option('-max_epochs',50,'number of full passes through the training data')
cmd:option('-grad_clip',5,'clip gradients at this value')
cmd:option('-train_frac',0.95,'fraction of data that goes into train set')
cmd:option('-val_frac',0.05,'fraction of data that goes into validation set')
-- test_frac will be computed as (1 - train_frac - val_frac)
cmd:option('-init_from', '', 'initialize network parameters from checkpoint at this path')
-- bookkeeping
cmd:option('-seed',123,'torch manual random number generator seed')
cmd:option('-print_every',1,'how many steps/minibatches between printing out the loss')
cmd:option('-eval_val_every',1000,'every how many iterations should we evaluate on validation data?')
cmd:option('-checkpoint_dir', 'cv', 'output directory where checkpoints get written')
cmd:option('-savefile','lstm','filename to autosave the checkpont to. Will be inside checkpoint_dir/')
cmd:option('-accurate_gpu_timing',0,'set this flag to 1 to get precise timings when using GPU. Might make code bit slower but reports accurate timings.')
-- GPU/CPU
cmd:option('-gpuid',0,'which gpu to use. -1 = use CPU')
cmd:option('-opencl',0,'use OpenCL (instead of CUDA)')
cmd:text()
-- parse input params
opt = cmd:parse(arg)
torch.manualSeed(opt.seed)
-- train / val / test split for data, in fractions
local test_frac = math.max(0, 1 - (opt.train_frac + opt.val_frac))
local split_sizes = {opt.train_frac, opt.val_frac, test_frac}
-- initialize cunn/cutorch for training on the GPU and fall back to CPU gracefully
if opt.gpuid >= 0 and opt.opencl == 0 then
local ok, cunn = pcall(require, 'cunn')
local ok2, cutorch = pcall(require, 'cutorch')
if not ok then print('package cunn not found!') end
if not ok2 then print('package cutorch not found!') end
if ok and ok2 then
print('using CUDA on GPU ' .. opt.gpuid .. '...')
cutorch.setDevice(opt.gpuid + 1) -- note +1 to make it 0 indexed! sigh lua
cutorch.manualSeed(opt.seed)
else
print('If cutorch and cunn are installed, your CUDA toolkit may be improperly configured.')
print('Check your CUDA toolkit installation, rebuild cutorch and cunn, and try again.')
print('Falling back on CPU mode')
opt.gpuid = -1 -- overwrite user setting
end
end
-- initialize clnn/cltorch for training on the GPU and fall back to CPU gracefully
if opt.gpuid >= 0 and opt.opencl == 1 then
local ok, cunn = pcall(require, 'clnn')
local ok2, cutorch = pcall(require, 'cltorch')
if not ok then print('package clnn not found!') end
if not ok2 then print('package cltorch not found!') end
if ok and ok2 then
print('using OpenCL on GPU ' .. opt.gpuid .. '...')
cltorch.setDevice(opt.gpuid + 1) -- note +1 to make it 0 indexed! sigh lua
torch.manualSeed(opt.seed)
else
print('If cltorch and clnn are installed, your OpenCL driver may be improperly configured.')
print('Check your OpenCL driver installation, check output of clinfo command, and try again.')
print('Falling back on CPU mode')
opt.gpuid = -1 -- overwrite user setting
end
end
-- create the data loader class
local loader = CharSplitLMMinibatchLoader.create(opt.data_dir, opt.batch_size, opt.seq_length, split_sizes)
local vocab_size = loader.vocab_size -- the number of distinct characters
local vocab = loader.vocab_mapping
print('vocab size: ' .. vocab_size)
-- make sure output directory exists
if not path.exists(opt.checkpoint_dir) then lfs.mkdir(opt.checkpoint_dir) end
-- define the model: prototypes for one timestep, then clone them in time
local do_random_init = true
if string.len(opt.init_from) > 0 then
print('loading a model from checkpoint ' .. opt.init_from)
local checkpoint = torch.load(opt.init_from)
protos = checkpoint.protos
-- make sure the vocabs are the same
local vocab_compatible = true
local checkpoint_vocab_size = 0
for c,i in pairs(checkpoint.vocab) do
if not (vocab[c] == i) then
vocab_compatible = false
end
checkpoint_vocab_size = checkpoint_vocab_size + 1
end
if not (checkpoint_vocab_size == vocab_size) then
vocab_compatible = false
print('checkpoint_vocab_size: ' .. checkpoint_vocab_size)
end
assert(vocab_compatible, 'error, the character vocabulary for this dataset and the one in the saved checkpoint are not the same. This is trouble.')
-- overwrite model settings based on checkpoint to ensure compatibility
print('overwriting rnn_size=' .. checkpoint.opt.rnn_size .. ', num_layers=' .. checkpoint.opt.num_layers .. ', model=' .. checkpoint.opt.model .. ' based on the checkpoint.')
opt.rnn_size = checkpoint.opt.rnn_size
opt.num_layers = checkpoint.opt.num_layers
opt.model = checkpoint.opt.model
do_random_init = false
else
print('creating an ' .. opt.model .. ' with ' .. opt.num_layers .. ' layers')
protos = {}
if opt.model == 'lstm' then
protos.rnn = LSTM.lstm(vocab_size, opt.rnn_size, opt.num_layers, opt.dropout)
elseif opt.model == 'grid_lstm' then
protos.rnn = GridLSTM.grid_lstm(vocab_size, opt.rnn_size, opt.num_layers, opt.dropout, opt.tie_weights)
elseif opt.model == 'gru' then
protos.rnn = GRU.gru(vocab_size, opt.rnn_size, opt.num_layers, opt.dropout)
elseif opt.model == 'rnn' then
protos.rnn = RNN.rnn(vocab_size, opt.rnn_size, opt.num_layers, opt.dropout)
end
protos.criterion = nn.ClassNLLCriterion()
end
-- the initial state of the cell/hidden states
init_state = {}
for L=1,opt.num_layers do
local h_init = torch.zeros(opt.batch_size, opt.rnn_size)
if opt.gpuid >=0 and opt.opencl == 0 then h_init = h_init:cuda() end
if opt.gpuid >=0 and opt.opencl == 1 then h_init = h_init:cl() end
table.insert(init_state, h_init:clone())
if opt.model == 'lstm' or opt.model == 'grid_lstm' then
table.insert(init_state, h_init:clone()) -- extra initial state for prev_c
end
end
-- ship the model to the GPU if desired
if opt.gpuid >= 0 and opt.opencl == 0 then
for k,v in pairs(protos) do v:cuda() end
end
if opt.gpuid >= 0 and opt.opencl == 1 then
for k,v in pairs(protos) do v:cl() end
end
-- put the above things into one flattened parameters tensor
params, grad_params = model_utils.combine_all_parameters(protos.rnn)
-- initialization
if do_random_init then
params:uniform(-0.08, 0.08) -- small uniform numbers
end
-- initialize the LSTM forget gates with slightly higher biases to encourage remembering in the beginning
if opt.model == 'lstm' or opt.model == 'grid_lstm' then
for layer_idx = 1, opt.num_layers do
for _,node in ipairs(protos.rnn.forwardnodes) do
if node.data.annotations.name == "i2h_" .. layer_idx then
print('setting forget gate biases to 1 in LSTM layer ' .. layer_idx)
-- the gates are, in order, i,f,o,g, so f is the 2nd block of weights
node.data.module.bias[{{opt.rnn_size+1, 2*opt.rnn_size}}]:fill(1.0)
end
end
end
end
print('number of parameters in the model: ' .. params:nElement())
-- make a bunch of clones after flattening, as that reallocates memory
clones = {}
for name,proto in pairs(protos) do
print('cloning ' .. name)
clones[name] = model_utils.clone_many_times(proto, opt.seq_length, not proto.parameters)
end
-- preprocessing helper function
function prepro(x,y)
x = x:transpose(1,2):contiguous() -- swap the axes for faster indexing
y = y:transpose(1,2):contiguous()
if opt.gpuid >= 0 and opt.opencl == 0 then -- ship the input arrays to GPU
-- have to convert to float because integers can't be cuda()'d
x = x:float():cuda()
y = y:float():cuda()
end
if opt.gpuid >= 0 and opt.opencl == 1 then -- ship the input arrays to GPU
x = x:cl()
y = y:cl()
end
return x,y
end
function get_input_mem_cell()
local input_mem_cell = torch.zeros(opt.batch_size, opt.rnn_size)
if opt.gpuid >= 0 and opt.opencl == 0 then
input_mem_cell = input_mem_cell:float():cuda()
end
return input_mem_cell
end
function get_zeroed_d_output_t(vocab_size)
local zeroed_d_output_t = torch.zeros(opt.batch_size, vocab_size)
if opt.gpuid >= 0 and opt.opencl == 0 then
zeroed_d_output_t = zeroed_d_output_t:float():cuda()
end
return zeroed_d_output_t
end
-- evaluate the loss over an entire split
function eval_split(split_index, max_batches)
print('evaluating loss over split index ' .. split_index)
local n = loader.split_sizes[split_index]
if max_batches ~= nil then n = math.min(max_batches, n) end
loader:reset_batch_pointer(split_index) -- move batch iteration pointer for this split to front
local loss = 0
local accy = 0
local normal = 0
local rnn_state = {[0] = init_state}
for i = 1,n do -- iterate over batches in the split
-- fetch a batch
local x, y = loader:next_batch(split_index)
x,y = prepro(x,y)
-- forward pass
for t=1,opt.seq_length do
clones.rnn[t]:evaluate() -- for dropout proper functioning
if opt.model == "grid_lstm" then
local input_mem_cell = get_input_mem_cell()
rnn_inputs = {input_mem_cell, x[t], unpack(rnn_state[t-1])} -- if we're using a grid lstm, hand in a zero vec for the starting memory cell state
else
rnn_inputs = {x[t], unpack(rnn_state[t-1])}
end
local lst = clones.rnn[t]:forward(rnn_inputs)
rnn_state[t] = {}
for i=1,#init_state do table.insert(rnn_state[t], lst[i]) end
prediction = lst[#lst]
local target_delimiter_position = opt.seq_length - (opt.digit_length + 2)
if opt.task == "addition" and t > target_delimiter_position then
max, pred_argmax = torch.max(prediction,2)
accy = accy + torch.eq(pred_argmax, y[t]):sum()
normal = normal + prediction:size(1)
end
loss = loss + clones.criterion[t]:forward(prediction, y[t])
end
-- carry over lstm state
rnn_state[0] = rnn_state[#rnn_state]
print(i .. '/' .. n .. '...')
end
local out
if opt.task == "addition" then
out = accy / normal
else
out = loss / opt.seq_length / n
end
return out
end
-- do fwd/bwd and return loss, grad_params
local init_state_global = clone_list(init_state)
function feval(x)
if x ~= params then
params:copy(x)
end
grad_params:zero()
------------------ get minibatch -------------------
local x, y = loader:next_batch(1)
x,y = prepro(x,y)
------------------- forward pass -------------------
local rnn_state = {[0] = init_state_global}
local predictions = {} -- softmax outputs
local loss = 0
for t=1,opt.seq_length do
clones.rnn[t]:training() -- make sure we are in correct mode (this is cheap, sets flag)
local rnn_inputs
if opt.model == "grid_lstm" then
local input_mem_cell = get_input_mem_cell()
rnn_inputs = {input_mem_cell, x[t], unpack(rnn_state[t-1])} -- if we're using a grid lstm, hand in a zero vec for the starting memory cell state
else
rnn_inputs = {x[t], unpack(rnn_state[t-1])}
end
local lst = clones.rnn[t]:forward(rnn_inputs)
rnn_state[t] = {}
for i=1,#init_state do table.insert(rnn_state[t], lst[i]) end -- extract the state, without output
predictions[t] = lst[#lst] -- last element is the prediction
loss = loss + clones.criterion[t]:forward(predictions[t], y[t])
end
loss = loss / opt.seq_length
------------------ backward pass -------------------
-- initialize gradient at time t to be zeros (there's no influence from future)
local drnn_state = {[opt.seq_length] = clone_list(init_state, true)} -- true also zeros the clones
for t=opt.seq_length,1,-1 do
-- If we're doing the addition task and we're at t < position of target delimiter, just use a vec of zeros for dL/dOutput
-- We don't want to suffer prediction loss prior to the target delimiter, just recurrence loss.
local target_delimiter_position = opt.seq_length - (opt.digit_length + 2)
if opt.task == "addition" and t < target_delimiter_position then
doutput_t = get_zeroed_d_output_t(loader.vocab_size)
else
doutput_t = clones.criterion[t]:backward(predictions[t], y[t])
end
-- backprop through loss, and softmax/linear
table.insert(drnn_state[t], doutput_t) -- drnn_state[t] already has dL/dH_t+1 vectors for every layer; just adding the dL/dOutput to the list.
local dlst = clones.rnn[t]:backward(rnn_inputs, drnn_state[t]) -- <- right here, you're appending the doutput_t to the list of dLdh for all layers, then using that big list to backprop into the input and unpacked rnn state vecs at t-1
drnn_state[t-1] = {}
local skip_index
if opt.model == "grid_lstm" then skip_index = 2 else skip_index = 1 end
for k,v in pairs(dlst) do
if k > skip_index then -- k <= skip_index is gradient on inputs, which we dont need
-- note we do k-1 because first item is dembeddings, and then follow the
-- derivatives of the state, starting at index 2. I know...
drnn_state[t-1][k-skip_index] = v
end
end
end
------------------------ misc ----------------------
-- transfer final state to initial state (BPTT)
init_state_global = rnn_state[#rnn_state] -- NOTE: I don't think this needs to be a clone, right?
-- grad_params:div(opt.seq_length) -- this line should be here but since we use rmsprop it would have no effect. Removing for efficiency
-- clip gradient element-wise
grad_params:clamp(-opt.grad_clip, opt.grad_clip)
return loss, grad_params
end
-- start optimization here
train_losses = {}
val_losses = {}
local optim_state = {learningRate = opt.learning_rate, alpha = opt.decay_rate}
local iterations = opt.max_epochs * loader.ntrain
local iterations_per_epoch = loader.ntrain
local loss0 = nil
for i = 1, iterations do
local epoch = i / loader.ntrain
local timer = torch.Timer()
local _, loss = optim.rmsprop(feval, params, optim_state)
if opt.accurate_gpu_timing == 1 and opt.gpuid >= 0 then
--[[
Note on timing: The reported time can be off because the GPU is invoked async. If one
wants to have exactly accurate timings one must call cutorch.synchronize() right here.
I will avoid doing so by default because this can incur computational overhead.
--]]
cutorch.synchronize()
end
local time = timer:time().real
local train_loss = loss[1] -- the loss is inside a list, pop it
train_losses[i] = train_loss
-- exponential learning rate decay
if i % loader.ntrain == 0 and opt.learning_rate_decay < 1 then
if epoch >= opt.learning_rate_decay_after then
local decay_factor = opt.learning_rate_decay
optim_state.learningRate = optim_state.learningRate * decay_factor -- decay it
print('decayed learning rate by a factor ' .. decay_factor .. ' to ' .. optim_state.learningRate)
end
end
-- every now and then or on last iteration
if i % opt.eval_val_every == 0 or i == iterations then
-- evaluate loss on validation data
local val_loss = eval_split(2) -- 2 = validation
val_losses[i] = val_loss
local savefile = string.format('%s/lm_%s_epoch%.2f_%.4f.t7', opt.checkpoint_dir, opt.savefile, epoch, val_loss)
print('saving checkpoint to ' .. savefile)
local checkpoint = {}
checkpoint.protos = protos
checkpoint.opt = opt
checkpoint.train_losses = train_losses
checkpoint.val_loss = val_loss
checkpoint.val_losses = val_losses
checkpoint.i = i
checkpoint.epoch = epoch
checkpoint.vocab = loader.vocab_mapping
torch.save(savefile, checkpoint)
end
if i % opt.print_every == 0 then
print(string.format("%d/%d (epoch %.3f), train_loss = %6.8f, grad/param norm = %6.4e, time/batch = %.4fs", i, iterations, epoch, train_loss, grad_params:norm() / params:norm(), time))
end
if i % 10 == 0 then collectgarbage() end
-- handle early stopping if things are going really bad
if loss[1] ~= loss[1] then
print('loss is NaN. This usually indicates a bug. Please check the issues page for existing issues, or create a new issue, if none exist. Ideally, please state: your operating system, 32-bit/64-bit, your blas version, cpu/cuda/cl?')
break -- halt
end
if loss0 == nil then loss0 = loss[1] end
if loss[1] > loss0 * 3 then
print('loss is exploding, aborting.')
break -- halt
end
end