-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsparse-inverseRL.py
121 lines (104 loc) · 4.32 KB
/
sparse-inverseRL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
'''inverse reinforcement learning algorithm'''
from scipy.optimize import differential_evolution, fmin_tnc, fmin_l_bfgs_b, minimize
import random
import numpy
import copy as py_copy
import math
import sys
import time
NUM_ACT = 4
NUM_MODULE = 10
class observed_inst():
'''observed data from agent
look at log likelihood function, at time t, for module instance m of module class n
we need to record time t, module class n (obstacle or prize), chosen action a, discount factor power d(a), and d(-a)
a sample is of the form [trial, t, n(0-prize, 1-obstacle], a, [d(Up, Down, Left, Right)]]'''
def __init__(self, stepCount, module_class, unit_r, chosen_action, ds):
self.stepCount = stepCount
self.module_class = module_class
self.unit_r = unit_r
self.chosen_action = chosen_action
self.ds = py_copy.deepcopy(ds) #array of length |ACTIONS|
def record(self, data_file):
'''write data to file'''
data_file.write(str(self.module_class) + ',' \
+ str(self.unit_r) + ','\
+ str(self.chosen_action) + ',' \
+ str(self.ds[0]) + ',' + str(self.ds[1]) + ',' + str(self.ds[2]) + ',' + str(self.ds[3]) )
def __str__(self):
return "[Step:{}, ModuleClassID:{}, UnitReward:{}, Action:{}, Dists: {}]".format \
(self.stepCount, self.module_class, self.unit_r, self.chosen_action, self.ds)
class inverse_rl:
def __init__(self, data_file, sparse):
self.data_file = data_file
self.sparse = sparse
if self.sparse == True:
print("sparse version")
else:
print("non sparse version")
def construct_obj(self, x):
# construct objective function
data_file = open(self.data_file,'r')
logl = 0
# each line is a step of execution
for line in data_file:
data = line.split()
insts = []
# each inst
for inst in data:
inst_data = inst.split(',')
mc_id = int(inst_data[0])
unit_r = int(inst_data[1])
act = int(inst_data[2])
ds = []
for i in range(NUM_ACT):
ds.append(int(inst_data[i + 3]))
# the w*r*(gamma**d) term
terms = []
# for each action:
for d in ds:
term = x[mc_id * 2] * unit_r * (x[mc_id * 2 + 1]**d)
terms.append(py_copy.deepcopy(term))
insts.append(py_copy.deepcopy(terms))
# first term in loglikelihood function
first_term = 0
for inst in insts:
first_term += inst[act]
# second term
second_term = 0
for a in range(NUM_ACT):
temp = 1
for inst in insts:
temp = temp * math.exp(inst[a])
second_term += py_copy.deepcopy(temp)
second_term = math.log(second_term)
logl = logl + py_copy.deepcopy(first_term) - py_copy.deepcopy(second_term)
# l1 norm on w
if self.sparse:
delta = 1
for i in range(NUM_MODULE):
logl = logl - delta * x[i * 2]
data_file.close()
obj = -logl
print("objective function constructed, one iter completed >>>")
return obj
# def callbackF(self,Xi):
# print '{0:4d} {1: 3.2f} {2: 3.2f} {3: 3.2f} {4: 3.2f} {5: 3.2f}'.format(Xi[0], Xi[1], Xi[2], Xi[3], Xi[4], Xi[5])
def optimize(self):
# differential evolution
# two modules the variables are x[0] = w0, x[1] = gamma0, x[2] = w1, x[3] = gamma1...
x0 = []
bound = []
for i in range(NUM_MODULE):
x0.append(10)
x0.append(0.5)
bound.append((0,20))
bound.append((0,0.9))
#print(x0)
#print(bound)
#print("begin minimization algorithm >>>")
#return differential_evolution(self.construct_obj, bounds)
return minimize(self.construct_obj, x0, method = 'SLSQP', bounds = bound)
if __name__ == '__main__':
test = inverse_rl(sys.argv[1], int(sys.argv[2]))
test.optimize()