-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPy_fun_for_RFTB.py
36 lines (26 loc) · 1.29 KB
/
Py_fun_for_RFTB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from sklearn.ensemble import ExtraTreesRegressor
import numpy as np
def train_ExtraTreesRegressor(X_train, y_train, n_estimators=201, max_features='Jorgenson', random_state=None):
if max_features == 'Jorgenson':
max_features = round(X_train.shape[1]*2/3)
reg = ExtraTreesRegressor(n_estimators=n_estimators, max_features=max_features, random_state=random_state).fit(X_train, y_train)
return reg
def get_voting_ExtraTreesRegressor(X, reg):
voting = []
for tree in reg.estimators_:
voting.append(tree.predict(X).tolist())
voting = np.asarray(voting)
return voting
def get_voting_stats_ExtraTreesRegressor(X, reg, central_tendency='aritmetic_mean', dispersion='dev_std'):
voting = get_voting_ExtraTreesRegressor(X, reg)
# Central tendency
if central_tendency == 'aritmetic_mean':
voting_central_tendency = voting.mean(axis=0)
elif central_tendency == 'median':
voting_central_tendency = np.median(voting, axis=0)
# Dispersion
if dispersion == 'dev_std':
voting_dispersion = voting.std(axis=0)
elif dispersion == 'IQR':
voting_dispersion = np.percentile(voting, 75) - np.percentile(voting, 25)
return voting_central_tendency, voting_dispersion