forked from mlco2/codecarbon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist-comet.py
30 lines (22 loc) · 935 Bytes
/
mnist-comet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from comet_ml import Experiment # isort:skip
import tensorflow as tf
# Assumes Comet variable environment configuration.
# See here to get your API_KEY:
# https://www.comet.ml/user/settings/account#section-DEVELOPER_INFORMATION
# And here for setup information:
# https://www.comet.ml/docs/python-sdk/advanced/#experiment-configuration-parameters
experiment = Experiment()
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential(
[
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10),
]
)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
model.fit(x_train, y_train, epochs=10)