-
Notifications
You must be signed in to change notification settings - Fork 0
/
2014-04-17-Outliers.html
437 lines (342 loc) · 9.84 KB
/
2014-04-17-Outliers.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
<!DOCTYPE html>
<html>
<head>
<title>Data Mining</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style type="text/css">
@import url(http://fonts.googleapis.com/css?family=Droid+Serif);
@import url(http://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
body {
font-family: 'Droid Serif';
font-size: 25px;
}
.remark-slide-content {
padding: 1em 2em 1em 2em;
}
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: 400;
margin-top: 0;
margin-bottom: 0;
}
h1 { font-size: 3em; }
h2 { font-size: 1.8em; }
h3 { font-size: 1.4em; }
.footnote {
position: absolute;
bottom: 3em;
}
ul { margin: 8px;}
li p { line-height: 1.25em; }
.red { color: #fa0000; }
.large { font-size: 2em; }
a, a > code {
color: rgb(249, 38, 114);
text-decoration: none;
}
code {
-moz-border-radius: 3px;
-web-border-radius: 3px;
background: #e7e8e2;
color: black;
border-radius: 3px;
}
.tight-code {
font-size: 20px;
}
.white-background {
background-color: white;
padding: 10px;
display: block;
margin-left: auto;
margin-right: auto;
}
.limit-size img {
height: auto;
width: auto;
max-width: 1000px;
max-height: 500px;
}
em { color: #80cafa; }
.pull-left {
float: left;
width: 47%;
}
.pull-right {
float: right;
width: 47%;
}
.pull-right ~ p {
clear: both;
}
#slideshow .slide .content code {
font-size: 1.6em;
}
#slideshow .slide .content pre code {
font-size: 1.6em;
padding: 15px;
}
.inverse {
background: #272822;
color: #e3e3e3;
text-shadow: 0 0 20px #333;
}
.inverse h1, .inverse h2 {
color: #f3f3f3;
line-height: 1.6em;
}
/* Slide-specific styling */
#slide-inverse .footnote {
bottom: 12px;
left: 20px;
}
#slide-how .slides {
font-size: 1.6em;
position: absolute;
top: 151px;
right: 140px;
}
#slide-how .slides h3 {
margin-top: 0.2em;
}
#slide-how .slides .first, #slide-how .slides .second {
padding: 1px 20px;
height: 90px;
width: 120px;
-moz-box-shadow: 0 0 10px #777;
-webkit-box-shadow: 0 0 10px #777;
box-shadow: 0 0 10px #777;
}
#slide-how .slides .first {
background: #fff;
position: absolute;
top: 20%;
left: 20%;
z-index: 1;
}
#slide-how .slides .second {
position: relative;
background: #fff;
z-index: 0;
}
.center {
float: center;
}
/* Two-column layout */
.left-column {
width: 48%;
float: left;
}
.right-column {
width: 48%;
float: right;
}
.right-column img {
max-width: 120%;
max-height: 120%;
}
/* Tables */
table {
border-collapse: collapse;
margin: 0px;
}
table, th, td {
border: 1px solid white;
}
th, td {
padding: 7px;
}
</style>
</head>
<body>
<textarea id="source">
name: inverse
layout: true
class: left, top, inverse
---
# Outliers
---
## Generative Model
+ "Real" model that produced original data points
+ Our mission is to reproduce the original model
+ Thus we have different techniques that can model different behavior
???
## Questions
+ What is a "generative model"?
+ What is data mining trying to discover? What is machine learning hoping to
reproduce?
+ Why have different classifiers? Decision tree, Naive Bayes, etc?
---
## Outliers
+ Significant deviation
+ Probably generated through a *different model* than the rest of the data
+ Normal / Abnormal
.center[
<img src="img/outlier.jpg" width=80% />
]
???
## Intuitive
+ We all have a pretty good intuitive understand of what outliers are
+ Mathematically, you can express the variation as a different generative
model
+ Normal / Abnormal data (be careful about using it in human contexts)
+ img: http://enriquegortiz.com/wordpress/enriquegortiz/research/undergraduate/
---
## Outlier Types
+ Global
+ points which deviate from the rest of the *entire* data set - point
anomalies
+ Contextual
+ points which deviate from their *peers* - conditional outliers
+ Collective
+ points which deviate as a *group*, even though individual
points may not be considered outliers.
---
## Which Type?
+ Given class sizes at Berkeley:
+ A day with 10 people in class
+ A day with 7000 people in class
+ 3 weeks of 15 people in *this* class
+ Given Earth's temperatures:
+ A day at 100°C
+ 30 straight days of rain in Berkeley
+ A day at 100°F
---
## Types of Learning
+ Supervised
+ Unsupervised
+ Semi-Supervised
<img src="img/ml-large-icon.png" width=100% />
???
## Types of Learning
+ Supervised: learning from "gold standard" labels
+ Unsupervised: learning without labels
+ Semi-Supervised: infer more labels from a few, learn based on inferred +
labeled
+ img: https://www.coursera.org/course/ml
---
## Outlier Methods
+ Supervised
+ Label outliers, treat as classification problem
+ Unsupervised
+ Cluster data, find points not clustered well
+ Semi-Supervised
+ Manually label a few, find points nearby to automatically
label, then treat as classification
+ Statistical
+ Decide on a generative model / distribution, find points
which have a low probability of belonging
+ Proximity
+ Use relative distance to neighbors
???
## Features
+ Some methods may be overlapping
+ When developing features for classification, using relative features can
be helpful: e.g., distance from mean
+ e.g., Agglomerative clustering, find lone/small groups that are last to
glom together
+ e.g. k-means find points which are "far" out from centroids
+ Determining "far", "last" can be application specific, part of the
challenge
+ What algorithm could we use to automatically label nearby points? k-nearest
neighbor
+ Statistical: Again, must define "low" in your domain
+ Proximity: basically translating features into another, relative space,
then applying a different type of outlier detection (e.g., statistical)
---
## Statistical
+ Assume a distribution
+ Determine parameters
+ Calculate probability of a point be generated by distribution
???
## Why Statistical
+ We've covered supervised and clustering, so let's skip to statistical methods
+ Most straight forward way is to use distributions
---
## Statistical Example
+ Assume a normal distribution
+ Determine mean and standard distribution
+ If ```(point-mean)/stddev > 3```, consider it an outlier
<img src="img/gaussian-simple.png" width=85% />
???
## Pros/Cons
+ Straightforward
+ Can use % to intuitively motivate (3 stdevs is outside 99.7%)
+ But must manually determine cut-off
+ How do we know we got the parameters right?
---
## Grubb's Test
+ Takes into account sample size; reliability of mean/stddev measurements
+ Take Z-score of a point, assign to ```G```
+ Student t-test: used to measure the distribution of *actual* mean from a
sample
.white-background[
<img src="img/grubbs.png" width=100% />
]
???
## Pros/Cons
+ Z-score: ```abs(x-u)/s```
+ This isn't actually *that* different from measuring stddev
+ But accounts for sample size, can express your confidence with alpha 95% (0.05)
+ Not going to go into t-test/t-distribution here, but basically it helps
show where the mean likely is, given a set of sample data.
---
## Outlier Distance
+ How to find outliers in > 1 dimension?
???
## Limitations
+ What are the limitations of the techniques we've seen?
+ Limited to one dimension! Taking mean, stddev, etc. applies to 1
dimension
---
## Outlier Distance
+ How to find outliers in > 1 dimension?
+ Translate distance to 1 dimension, find outliers
+ How to measure distance?
???
## Limitations
+ Euclidean: doesn't take into account dependent variables
---
## Mahalanobis Distance
+ ```y``` depends somewhat on ```x```
+ Euclidean distance measures all dimensions equally
+ Use *covariance matrix* to normalize distances in each dimension
+ Matrix in which ```E_i,j``` is the covariance of ```i```, ```j``` dimensions
.center[
<img src="img/GaussianScatterPCA.png" width=60% />
]
???
## Mahalanobis
+ How to capture intuition that a distance along major axis is different than
along this minor axis?
+ Expand this drawing into 3 dimensions
+ Euclidean distance will equally weight something that is out in the ```z```
direction as something that is along this primary scatter area
---
## Mahalanobis Definition
+ Find the mean vector
+ Normalize by covariance
.white-background[
<img src="img/mahalanobis.png" width=100% />
]
???
## Some Math
+ Some extra math tricks to make the units work out:
+ We're taking the squared distance, then taking the square root
+ DM has *squared* Mahalanobis distance defined
+ What happens if we have no covariance? S is the Identity matrix
---
## Contextual Outliers
+ Typically reduce scope to context, use global techniques
+ Example: Calculate normal distribution for Berkeley weather
+ Collective outliers: find collections, use as context
---
# *Break*
</textarea>
<script src="production/remark-0.5.9.min.js" type="text/javascript">
</script>
<script type="text/javascript">
var slideshow = remark.create();
</script>
</body>
</html>