diff --git a/feat/face_detectors/MTCNN/MTCNN_test.py b/feat/face_detectors/MTCNN/MTCNN_test.py index f67be176..8476f06c 100644 --- a/feat/face_detectors/MTCNN/MTCNN_test.py +++ b/feat/face_detectors/MTCNN/MTCNN_test.py @@ -90,56 +90,6 @@ def __init__( if not self.selection_method: self.selection_method = "largest" if self.select_largest else "probability" - def forward(self, img, save_path=None, return_prob=False): - """Run MTCNN face detection on a PIL image or numpy array. This method performs both - detection and extraction of faces, returning tensors representing detected faces rather - than the bounding boxes. To access bounding boxes, see the MTCNN.detect() method below. - - Arguments: - img {PIL.Image, np.ndarray, or list} -- A PIL image, np.ndarray, torch.Tensor, or list. - - Keyword Arguments: - save_path {str} -- An optional save path for the cropped image. Note that when - self.post_process=True, although the returned tensor is post processed, the saved - face image is not, so it is a true representation of the face in the input image. - If `img` is a list of images, `save_path` should be a list of equal length. - (default: {None}) - return_prob {bool} -- Whether or not to return the detection probability. - (default: {False}) - - Returns: - Union[torch.Tensor, tuple(torch.tensor, float)] -- If detected, cropped image of a face - with dimensions 3 x image_size x image_size. Optionally, the probability that a - face was detected. If self.keep_all is True, n detected faces are returned in an - n x 3 x image_size x image_size tensor with an optional list of detection - probabilities. If `img` is a list of images, the item(s) returned have an extra - dimension (batch) as the first dimension. - Example: - >>> from facenet_pytorch import MTCNN - >>> mtcnn = MTCNN() - >>> face_tensor, prob = mtcnn(img, save_path='face.png', return_prob=True) - """ - - # Detect faces - batch_boxes, batch_probs, batch_points = self.detect(img, landmarks=True) - - # Select faces - if not self.keep_all: - batch_boxes, batch_probs, batch_points = self.select_boxes( - batch_boxes, - batch_probs, - batch_points, - img, - method=self.selection_method, - ) - # Extract faces - faces = self.extract(img, batch_boxes, save_path) - - if return_prob: - return faces, batch_probs - else: - return faces - def __call__(self, img, landmarks=False): """Detect all faces in PIL image and return bounding boxes and optional facial landmarks. This method is used by the forward method and is also useful for face detection tasks @@ -192,8 +142,8 @@ def __call__(self, img, landmarks=False): boxes, points = [], [] for box, point in zip(batch_boxes, batch_points): if len(box) == 0: - boxes.append(None) - points.append(None) + boxes.append([]) + points.append([]) elif self.select_largest: box_order = np.argsort( (box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1])