-
Notifications
You must be signed in to change notification settings - Fork 0
/
app_Alzheimer_v3.py
213 lines (190 loc) · 11.9 KB
/
app_Alzheimer_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import streamlit as st
import pandas as pd
import numpy as np
import seaborn as sns
from itertools import permutations
import networkx as nx
import matplotlib.pyplot as plt
import scipy
import scipy.cluster.hierarchy as sch
import itertools
import ndlib.models.epidemics as ep
import ndlib.models.ModelConfig as mc
import ndlib.models.opinions as opn
from ndlib.viz.mpl.DiffusionTrend import DiffusionTrend
#st.set_option('deprecation.showPyplotGlobalUse', False)
st.set_page_config(layout="wide")
st.title('Brain Network')
'''
def plot_corr(corr):
fig, ax = plt.subplots(figsize=(20,20))
cax = ax.matshow(corr, cmap='Blues')
plt.xticks(range(len(corr.columns)), corr.columns, rotation=90);
plt.yticks(range(len(corr.columns)), corr.columns);
cbar = fig.colorbar(cax, ticks=[-1, 0, 1], aspect=40, shrink=.8)
st.pyplot(fig)
'''
def plot_corr(corr):
fig, ax = plt.subplots(figsize=(20,20))
cax = ax.matshow(corr, cmap='Blues')
# Increase font size for x-axis tick labels
plt.xticks(range(len(corr.columns)), corr.columns, rotation=90, fontsize=6)
# Increase font size for y-axis tick labels
plt.yticks(range(len(corr.columns)), corr.columns, fontsize=6)
cbar = fig.colorbar(cax, ticks=[-1, 0, 1], aspect=40, shrink=.8)
st.pyplot(fig)
@st.cache
def loadData():
matrix = pd.read_csv('matrix.csv', index_col = 0)
colorlist = pd.read_csv('colorlist.csv', index_col = 0)['0']
colornumbs = pd.read_csv('colornumbs.csv', index_col = 0)['0']
lineList = pd.read_csv('lineList.csv', index_col = 0)['0']
sublist = pd.read_csv('sublist.csv', index_col = 0)['0']
refDF = pd.DataFrame({'colorlist':colorlist, 'lineList':lineList, 'sublist':sublist})
matrix.columns = lineList
matrix.index = lineList
return matrix, np.array(colorlist), np.array(colornumbs), np.array(lineList), np.array(sublist), refDF
def defineG(matrix0, threshold, Regions_Nodes, Nodes, LinkNodesToWeaken, LinkNodesToStrengthen):
matrix = abs(matrix0); matrix[matrix<=threshold] = 0
matrix = matrix[matrix.index.isin(Regions_Nodes)][matrix.columns[matrix.columns.isin(Regions_Nodes)]]
matrix = matrix[matrix.index.isin(Nodes)][matrix.columns[matrix.columns.isin(Nodes)]]
matrix.loc[matrix.index.isin(LinkNodesToWeaken), matrix.columns.isin(LinkNodesToWeaken)] = 0
matrix.loc[matrix.index.isin(LinkNodesToStrengthen), matrix.columns.isin(LinkNodesToStrengthen)] = 0.5
np.fill_diagonal(matrix.values, 0)
matrix = matrix.loc[Regions_Nodes,Regions_Nodes]
G = nx.from_numpy_array(np.array(matrix))
G.remove_edges_from(list(nx.selfloop_edges(G)))
return G, matrix
def centrality_calc(G, lineList):
G_distance_dict = {(e1, e2): 1 / abs(weight) for e1, e2, weight in G.edges(data='weight')}
nx.set_edge_attributes(G, G_distance_dict, 'distance')
closeness = pd.Series(nx.closeness_centrality(G, distance='distance')); closeness.index = lineList
betweenness = pd.Series(nx.betweenness_centrality(G, weight='distance', normalized=True)); betweenness.index = lineList
clustering = pd.Series(nx.clustering(G, weight='weight')); clustering.index = lineList
mean_clutering = nx.average_clustering(G, weight='weight')
return closeness, betweenness, clustering, mean_clutering
def brainNX(G, lineList):
strength = G.degree(weight='weight')
strengths = {node: val for (node, val) in strength}
nx.set_node_attributes(G, dict(strength), 'strength') # Add as nodal attribute
normstrenghts = {node: val * 1/(len(G.nodes)-1) for (node, val) in strength}
nx.set_node_attributes(G, normstrenghts, 'strengthnorm') # Add as nodal attribute
normstrengthlist = np.array([val * 1/(len(G.nodes)-1) for (node, val) in strength])
def Convert(lst):
res_dct = {i : lst[i] for i in range(0, len(lst))}
return res_dct
nx.set_node_attributes(G, Convert(lineList), 'area')
fig, ax = plt.subplots(figsize=(20,17))
edgewidth = [ d['weight'] for (u,v,d) in G.edges(data=True)]
pos = nx.spring_layout(G, scale=5)
nx.draw(G, pos, with_labels=True, width=np.power(edgewidth, 1), edge_color='red', node_size=normstrengthlist*20000,
labels=Convert(lineList), font_color='black', alpha=0.7, font_size=9)
st.pyplot(fig)
def dynBrainNX(g,epsilon,init):
model = opn.WHKModel(g)
config = mc.Configuration()
config.add_model_parameter("epsilon", epsilon)
for e in g.edges:
config.add_edge_configuration("weight", e, g.get_edge_data(*e)['weight'])
model.set_initial_status(config)
initial_statuses = {node: i for node,i in zip(g.nodes(),init)} # custom initial statuses: values in [-1, 1]
model.status = initial_statuses
model.initial_status = initial_statuses
iterations = model.iteration_bunch(100, node_status=True)
return iterations
matrix, colorlist, colornumbs, lineList, sublist, refDF = loadData()
#col1, col2 = st.columns(2)
#with col1:
###################
# Regions = st.multiselect('Select Region(s) to Focus', set(sublist), set(sublist))
# Regions = st.multiselect('Select Region(s) to Focus', set(sublist), ['DMN'])
# Regions_Nodes = refDF[refDF['sublist'].isin(Regions)]['lineList'].values
# Regions_Nodes = ['RAG2','RP1','RT1','RIC1','RT2','LPG12','LIC1','LPG4','LT1','LP1','RC1','RPG7','RPG9','LSPL1','LC1','LPG5','LC2','RC2','LSPL2',\
# 'RSPL1','LPG6','RPG8','LIC3','B1','LIC2','RPG6','RPG2','LT2','LPG8','RPG10','RAG1','LAG1']
Regions_Nodes = ['RPC1', 'RPC2', 'RPC3', 'RPC4', 'RPC5', 'LPC1', 'LPC2', 'LPC3', 'LPC4', 'RCGpd1', 'RCGpd2', 'LCGpd1', 'RAG1', 'RAG2', 'LAG1',\
'RH1', 'RH2', 'LH1', \
'RPG1', 'RPG2', 'RPG3', 'RPG4', 'RPG5', 'RPG6', 'RPG7', 'RPG8', 'RPG9', 'RPG10', 'RPG11', \
'LPG1', 'LPG2', 'LPG3', 'LPG4', 'LPG5', 'LPG6', 'LPG7', 'LPG8', 'LPG9', 'LPG10', 'LPG11', 'LPG12', 'LPG13', 'LA1',\
'RIC1', 'RIC2', 'LIC1', 'LIC2', 'LIC3', 'RCGad1', 'RCGad2', 'RCGad3', 'RCGad4', 'LCC1',\
'RMFG1', 'RMFG2', 'RMFG3', 'RMFG4', 'LMFG1', 'LMFG2', 'LMFG3', 'LMFG4', 'RSPL1', 'LSPL1', 'LSPL2',\
'RT1', 'RT2', 'LT1', 'LT2']
Nodes = st.multiselect('Select Node(s) to Focus', Regions_Nodes, Regions_Nodes)
LinkNodesToWeaken = st.multiselect('Select Links in between Node(s) to Weaken', Regions_Nodes)
LinkNodesToStrengthen = st.multiselect('Select Links in between Node(s) to Strengthen', Regions_Nodes)
threshold = st.slider('Threshold to Filter', 0.0, 1.0, 0.0)
G, matrix1 = defineG(matrix, threshold, Regions_Nodes, Nodes, LinkNodesToWeaken, LinkNodesToStrengthen)
if st.checkbox('Show matrix'):
st.write(matrix1)
closeness, betweenness, clustering, mean_clutering = centrality_calc(G,Nodes)
tab1, tab2 = st.tabs(["Bar Chart", "Distribution Chart"])
with tab1:
fig, ax = plt.subplots(figsize=(20, 4)); closeness.plot.bar(); ax.set_title('Closeness'); st.pyplot(fig)
fig, ax = plt.subplots(figsize=(20, 4)); betweenness.plot.bar(); ax.set_title('Betweenness'); st.pyplot(fig)
fig, ax = plt.subplots(figsize=(20, 4)); clustering.plot.bar(); ax.set_title('Clustering, average='+str(mean_clutering)); st.pyplot(fig)
with tab2:
fig, axes = plt.subplots(3, 1, figsize=(20, 15));
sns.distplot(closeness, kde=False, norm_hist=False, ax=axes[0]); axes[0].set_xlabel('Closeness'); axes[0].set_ylabel('Counts')
sns.distplot(betweenness, kde=False, norm_hist=False, ax=axes[1]); axes[1].set_xlabel('Betweenness'); axes[1].set_ylabel('Counts')
sns.distplot(clustering, kde=False, norm_hist=False, ax=axes[2]); axes[2].set_xlabel('Clustering Coefficient'); axes[2].set_ylabel('Counts');
axes[2].set_title('average path length is '+str(round(nx.average_shortest_path_length(G, weight='distance'),2))+'Clustering, average='+str(round(mean_clutering,4)))
st.pyplot(fig)
##################
#with col2:
tab1, tab2, tab3 = st.tabs(["Brain Network Chart", "Clustered CorrCoef Matrix", "Left/Right CorrCoef Matrix"])
matrix_order = matrix1.copy()
X = matrix_order.values
d = sch.distance.pdist(X)
L = sch.linkage(d, method='complete')
ind = sch.fcluster(L, 0.5*d.max(), 'distance')
with tab1:
brainNX(G, matrix1.index)
st.write('The idea behind the WHK formulation is that the opinion of agent i at time t+1, will be given by the average opinion by its, selected, ϵ-neighbor.')
epsilon = st.slider('epsilon-neighbor', 0.0, 1.0, 0.5)
# SM = pd.Series(st.text_input('SENSORIMOTOR NODES TO FOCUS: (RAG2,RP1,RT1,RIC1,RT2,LPG12)', '0.0, 0.0, 0.0, 0.0, 0.0, 0.0').split(',')).astype(float)
# DMN = pd.Series(st.text_input('DEFAULT MODE NETWORK NODES TO FOCUS: (LIC1,LPG4,LT1,LP1,RC1,RPG7,RPG9,LSPL1)', '0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0').split(',')).astype(float)
# LIM = pd.Series(st.text_input('LIMBIC NODES TO FOCUS: (LC1,LPG5,LC2,RC2,LSPL2)', '0.0, 0.0, 0.0, 0.0, 0.0').split(',')).astype(float)
# VIS = pd.Series(st.text_input('VIS NODES TO FOCUS: (RSPL1,LPG6,RPG8,LIC3,B1)', '0.0, 0.0, 0.0, 0.0, 0.0').split(',')).astype(float)
# FP = pd.Series(st.text_input('FP NODES TO FOCUS: (LIC2,RPG6)', '0.0, 0.0').split(',')).astype(float)
# VA = pd.Series(st.text_input('VA NODES TO FOCUS: (RPG2,LT2,LPG8,RPG10)','0.0, 0.0, 0.0, 0.0').split(',')).astype(float)
# MS = pd.Series(st.text_input('MISCELLANEOUS : (RAG1,LAG1)', '0.0, 0.0').split(',')).astype(float)
# init = pd.concat([SM, DMN, LIM, VIS, FP, VA, MS])
DMN = pd.Series(st.text_input('DEFAULT MODE NETWORK NODES TO FOCUS: (RPC1,RPC2,RPC3,RPC4,RPC5,LPC1,LPC2,LPC3,LPC4,RCGpd1,RCGpd2,LCGpd1,RAG1,RAG2,LAG1)', '0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0').split(',')).astype(float)
LIM = pd.Series(st.text_input('LIMBIC NODES TO FOCUS: (RH1,RH2,LH1,RPG1,RPG2,RPG3,RPG4,RPG5,RPG6,RPG7,RPG8,RPG9,RPG10,RPG11,LPG1,LPG2,LPG3,LPG4,LPG5,LPG6,LPG7,LPG8,LPG9,LPG10,LPG11,LPG12,LPG13,LA1)', \
'0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0').split(',')).astype(float)
VA = pd.Series(st.text_input(' VA NODES TO FOCUS: (RIC1,RIC2,LIC1,LIC2,LIC3,RCGad1,RCGad2,RCGad3,RCGad4,LCC1)', '0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0').split(',')).astype(float)
FP = pd.Series(st.text_input('FP NODES TO FOCUS: (RMFG1,RMFG2,RMFG3,RMFG4,LMFG1,LMFG2,LMFG3,LMFG4,RSPL1,LSPL1,LSPL2)', '0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0').split(',')).astype(float)
SM = pd.Series(st.text_input('SM NODES TO FOCUS: (RT1,RT2,LT1,LT2)', '0.0, 0.0, 0.0, 0.0').split(',')).astype(float)
init = pd.concat([DMN, LIM, VA, FP, SM])
if st.button('simulation'):
iterations = dynBrainNX(G,epsilon,init)
df = pd.DataFrame(iterations)
dff = df['status'].apply(lambda x: pd.Series(x))
dff.columns = matrix1.columns
st.write(dff.T.style.background_gradient(axis=None, cmap='seismic'))
# st.table(dff.T.style.background_gradient(axis=None, cmap='seismic'))
fig, ax = plt.subplots(figsize=(20, 10));
dff.plot(ax=ax).legend(loc='best')
st.pyplot(fig)
res = dff.T
res = res[res.columns[-1]]
st.write(res[res<-0.99].index)
st.write(res[res>0.99].index)
with tab2:
m_tab2 = matrix1.copy()
columns = [m_tab2.columns.tolist()[i] for i in list((np.argsort(ind)))]
m_tab2 = m_tab2[columns]; m_tab2 = m_tab2.T;
m_tab2 = m_tab2[columns]; m_tab2 = m_tab2.T;
if st.checkbox('Show matrix 2'):
st.write(m_tab2)
plot_corr(m_tab2)
with tab3:
m_tab3 = matrix1.copy()
columns = [m_tab3.columns.tolist()[i] for i in list((np.argsort(ind)))]
columns_L = [col for col in columns if col.lstrip()[0]=='L']
columns_R = [col for col in columns if col.lstrip()[0]!='L']
columns = columns_L + columns_R
m_tab3 = m_tab3[columns]; m_tab3 = m_tab3.T;
m_tab3 = m_tab3[columns]; m_tab3 = m_tab3.T;
if st.checkbox('Show matrix 3'):
st.write(m_tab3)
plot_corr(m_tab3)