Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix merging of data frames for payments #453

Merged
merged 5 commits into from
Dec 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 18 additions & 19 deletions src/fetch/payouts.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,10 +36,9 @@
}
SLIPPAGE_COLUMNS = {
"solver",
"solver_name",
"eth_slippage_wei",
}
REWARD_TARGET_COLUMNS = {"solver", "reward_target", "pool_address"}
REWARD_TARGET_COLUMNS = {"solver", "solver_name", "reward_target", "pool_address"}
SERVICE_FEE_COLUMNS = {"solver", "service_fee"}
ADDITIONAL_PAYMENT_COLUMNS = {"buffer_accounting_target", "reward_token_address"}

Expand Down Expand Up @@ -416,9 +415,12 @@ def construct_payout_dataframe(

# 3. Merge the three dataframes (joining on solver)
merged_df = (
payment_df.merge(slippage_df, on=join_column, how="left")
.merge(reward_target_df, on=join_column, how="left")
.merge(service_fee_df, on=join_column, how="left")
payment_df[list(PAYMENT_COLUMNS)]
.merge(slippage_df[list(SLIPPAGE_COLUMNS)], on=join_column, how="left")
.merge(
reward_target_df[list(REWARD_TARGET_COLUMNS)], on=join_column, how="left"
)
.merge(service_fee_df[list(SERVICE_FEE_COLUMNS)], on=join_column, how="left")
)

# 4. Add slippage from fees to slippage
Expand Down Expand Up @@ -510,11 +512,15 @@ def construct_payouts(
quote_rewards_df, batch_rewards_df, on="solver", how="outer"
).fillna(0)

service_fee_df = pandas.DataFrame(dune.get_service_fee_status())
service_fee_df["service_fee"] = [
service_fee_flag * config.reward_config.service_fee_factor
for service_fee_flag in service_fee_df["service_fee"]
]
service_fee_dune = dune.get_service_fee_status()
if service_fee_dune:
service_fee_df = pandas.DataFrame(service_fee_dune)
service_fee_df["service_fee"] = [
service_fee_flag * config.reward_config.service_fee_factor
for service_fee_flag in service_fee_df["service_fee"]
]
else:
service_fee_df = DataFrame(columns=["solver", "service_fee"])

vouches = dune.get_vouches()
if vouches:
Expand All @@ -525,15 +531,8 @@ def construct_payouts(
)
# construct slippage df
if ignore_slippage_flag or (not config.buffer_accounting_config.include_slippage):
slippage_df_temp = pandas.merge(
merged_df[["solver"]],
reward_target_df[["solver", "solver_name"]],
on="solver",
how="inner",
)
slippage_df = slippage_df_temp.assign(
eth_slippage_wei=[0] * slippage_df_temp.shape[0]
)
slippage_df = merged_df[["solver"]].copy()
slippage_df["eth_slippage_wei"] = [0] * slippage_df.shape[0]
else:
slippage_df = pandas.DataFrame(dune.get_period_slippage())
# TODO - After CIP-20 phased in, adapt query to return `solver` like all the others
Expand Down
67 changes: 34 additions & 33 deletions tests/unit/test_payouts.py
Original file line number Diff line number Diff line change
Expand Up @@ -153,11 +153,9 @@ def test_validate_df_columns(self):
"quote_reward_cow": [],
}
)
legit_slippages = DataFrame(
{"solver": [], "solver_name": [], "eth_slippage_wei": []}
)
legit_slippages = DataFrame({"solver": [], "eth_slippage_wei": []})
legit_reward_targets = DataFrame(
{"solver": [], "reward_target": [], "pool_address": []}
{"solver": [], "solver_name": [], "reward_target": [], "pool_address": []}
)
legit_service_fees = DataFrame({"solver": [], "service_fee": []})

Expand Down Expand Up @@ -221,14 +219,14 @@ def test_construct_payouts(self):
"solver": self.solvers[:3],
# Note that one of the solvers did not appear,
# in this list (we are testing the left join)
"solver_name": ["S_1", "S_2", "S_3"],
"eth_slippage_wei": [1, 0, -1],
}
)

reward_targets = DataFrame(
{
"solver": self.solvers,
"solver_name": ["S_1", "S_2", "S_3", "S_4"],
"reward_target": self.reward_targets,
"pool_address": self.pool_addresses,
}
Expand All @@ -247,69 +245,72 @@ def test_construct_payouts(self):
)
expected = DataFrame(
{
"solver": self.solvers,
"num_quotes": self.num_quotes,
"primary_reward_eth": [600000000000000.0, 1.2e16, -1e16, 0.0],
"protocol_fee_eth": [
1000000000000000.0,
2000000000000000.0,
0.0,
0.0,
"buffer_accounting_target": [
"0x0000000000000000000000000000000000000005",
str(self.solvers[1]),
str(self.solvers[2]),
str(self.solvers[3]),
],
"eth_slippage_wei": [2000000000000001.0, 4000000000000000.0, -1.0, 0.0],
"network_fee_eth": [
2000000000000000.0,
4000000000000000.0,
0.0,
0.0,
],
"pool_address": [
str(self.config.reward_config.cow_bonding_pool),
"0x0000000000000000000000000000000000000010",
"0x0000000000000000000000000000000000000011",
"0x0000000000000000000000000000000000000012",
],
"primary_reward_cow": [
600000000000000000.0,
12000000000000000000.0,
-10000000000000000000.0,
0.0,
],
"primary_reward_eth": [600000000000000.0, 1.2e16, -1e16, 0.0],
"protocol_fee_eth": [
1000000000000000.0,
2000000000000000.0,
0.0,
0.0,
],
"quote_reward_cow": [
0.00000,
0.00000,
6000000000000000000.00000,
12000000000000000000.00000,
],
"solver_name": ["S_1", "S_2", "S_3", None],
"eth_slippage_wei": [2000000000000001.0, 4000000000000000.0, -1.0, 0.0],
"reward_target": [
"0x0000000000000000000000000000000000000005",
"0x0000000000000000000000000000000000000006",
"0x0000000000000000000000000000000000000007",
"0x0000000000000000000000000000000000000008",
],
"pool_address": [
str(self.config.reward_config.cow_bonding_pool),
"0x0000000000000000000000000000000000000010",
"0x0000000000000000000000000000000000000011",
"0x0000000000000000000000000000000000000012",
"reward_token_address": [
str(self.config.reward_config.reward_token_address),
str(self.config.reward_config.reward_token_address),
str(self.config.reward_config.reward_token_address),
str(self.config.reward_config.reward_token_address),
],
"service_fee": [
Fraction(0, 100),
Fraction(0, 100),
Fraction(0, 100),
Fraction(15, 100),
],
"buffer_accounting_target": [
"0x0000000000000000000000000000000000000005",
str(self.solvers[1]),
str(self.solvers[2]),
str(self.solvers[3]),
],
"reward_token_address": [
str(self.config.reward_config.reward_token_address),
str(self.config.reward_config.reward_token_address),
str(self.config.reward_config.reward_token_address),
str(self.config.reward_config.reward_token_address),
],
"solver": self.solvers,
"solver_name": ["S_1", "S_2", "S_3", "S_4"],
}
)

self.assertIsNone(pandas.testing.assert_frame_equal(expected, result))
self.assertIsNone(
pandas.testing.assert_frame_equal(
expected, result.reindex(sorted(result.columns), axis=1)
)
)

def test_prepare_transfers(self):
# Need Example of every possible scenario
Expand Down
Loading