Skip to content

Latest commit

 

History

History
147 lines (117 loc) · 3.83 KB

README.md

File metadata and controls

147 lines (117 loc) · 3.83 KB

HTML to JSON

PyPI Build Status codecov

Convert HTML and/or HTML tables to JSON.

Installation

pip install html-to-json

Usage

HTML to JSON

import html_to_json_enhanced

html_string = """<head>
    <title>Test site</title>
    <meta charset="UTF-8"></head>"""
output_json = html_to_json_enhanced.convert(html_string)
print(output_json)

When calling the html_to_json.convert function, you can choose to not capture the text values from the html by passing in the key-word argument capture_element_values=False. You can also choose to not capture the attributes of the elements by passing capture_element_attributes=False into the function.

Example

Example input:

<head>
    <title>Floyd Hightower's Projects</title>
    <meta charset="UTF-8">
    <meta name="description" content="Floyd Hightower&#39;s Projects">
    <meta name="keywords" content="projects,fhightower,Floyd,Hightower">
</head>

Example output:

{
    "head": [
    {
        "title": [
        {
            "_value": "Floyd Hightower's Projects"
        }],
        "meta": [
        {
            "_attributes":
            {
                "charset": "UTF-8"
            }
        },
        {
            "_attributes":
            {
                "name": "description",
                "content": "Floyd Hightower's Projects"
            }
        },
        {
            "_attributes":
            {
                "name": "keywords",
                "content": "projects,fhightower,Floyd,Hightower"
            }
        }]
    }]
}

HTML Tables to JSON

In addition to converting HTML to JSON, this library can also intelligently convert HTML tables to JSON.

Currently, this library can handle three types of tables:

A. Those with table headers in the first row B. Those with table headers in the first column C. Those without table headers

Tables of type A and B are diagrammed below:

This package can handle tables with the headers in the first row or headers in the first column

Example

This code:

import html_to_json_enhanced

html_string = """<table>
    <tr>
        <th>#</th>
        <th>Malware</th>
        <th>MD5</th>
        <th>Date Added</th>
    </tr>

    <tr>
        <td>25548</td>
        <td><a href="/stats/DarkComet/">DarkComet</a></td>
        <td><a href="/config/034a37b2a2307f876adc9538986d7b86">034a37b2a2307f876adc9538986d7b86</a></td>
        <td>July 9, 2018, 6:25 a.m.</td>
    </tr>

    <tr>
        <td>25547</td>
        <td><a href="/stats/DarkComet/">DarkComet</a></td>
        <td><a href="/config/706eeefbac3de4d58b27d964173999c3">706eeefbac3de4d58b27d964173999c3</a></td>
        <td>July 7, 2018, 6:25 a.m.</td>
    </tr></table>"""
tables = html_to_json_enhanced.convert_tables(html_string)
print(tables)

will produce this output:

[
    [
        {
            "#": "25548",
            "Malware": "DarkComet",
            "MD5": "034a37b2a2307f876adc9538986d7b86",
            "Date Added": "July 9, 2018, 6:25 a.m."
        }, {
            "#": "25547",
            "Malware": "DarkComet",
            "MD5": "706eeefbac3de4d58b27d964173999c3",
            "Date Added": "July 7, 2018, 6:25 a.m."
        }
    ]
]

Credits

This package was created with Cookiecutter and fhightower's Python project template.