forked from udacity/CarND-Behavioral-Cloning-P3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
89 lines (69 loc) · 2.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import csv
import cv2
import numpy as np
lines = []
with open('../data/driving_log.csv') as csvfile:
reader = csv.reader(csvfile)
# skip header row
next(reader)
for line in reader:
lines.append(line)
images = []
measurements = []
steering_correction = 0.09
print("loading training data...")
for line in lines:
# use images from left and right camera as well
for index in range(1):
source_path = line[index]
filename = source_path.split('/')[-1]
current_path = '../data/IMG/' + filename
image = cv2.imread(current_path)
#image = cv2.resize(image, dsize=(32,32), interpolation = cv2.INTER_CUBIC)
image = np.asarray(image)
# convert BGR to RGB
image = image[:,:,::-1]
images.append(image)
measurement = float(line[3])
# manipulation of steering angle to use left and right pictures as well
if index == 1:
measuremnt = measurement + steering_correction
elif index == 2:
measuremnt = measurement - steering_correction
measurements.append(measurement)
# append flipped versions of images as well
image_flipped = np.fliplr(image)
images.append(image_flipped)
measurement_flipped = -measurement
measurements.append(measurement_flipped)
X_train = np.array(images)
y_train = np.array(measurements)
print("done.")
from keras.models import Sequential
from keras.layers import Flatten, Dense, Dropout
from keras.layers.convolutional import Conv2D
from keras.layers import Lambda, Cropping2D
from keras.layers.pooling import MaxPooling2D
dropout_rate = 0.23
model = Sequential()
model.add(Lambda(lambda x: (x / 255.0) - 0.5, input_shape=(160, 320, 3)))
model.add(Cropping2D(cropping=((70,25),(0,0))))
model.add(Conv2D(24, (5, 5), strides=(1, 1), padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Conv2D(36, (5, 5), strides=(2, 2), padding='same', activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Conv2D(48, (5, 5), strides=(1, 1), padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Conv2D(64, (3, 3), strides=(2, 2), padding='same', activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(1164, activation='relu'))
model.add(Dense(100, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
model.fit(X_train, y_train, validation_split=0.2, shuffle=True, epochs=3)
model.save('model.h5')