>>> from datatype.validation import failures >>> datatype = {'foo': [{'bar': 'int'}]} >>> bad_value = {'foo': [{'bar': 'baz'}], 'bif': 'pow!'} >>> failures(datatype, bad_value) ['foo[0].bar: expected int, got str', 'unexpected property "bif"']
Wildcard dictionary keys:
>>> datatype = {'_any_': ['int']} >>> good_value = {'foo': [1, 2, 3], 'bar': [3, 4, 5]} >>> failures(datatype, good_value) []
Datatype definitions are represented with a small set of types that should be built-in for most languages.
Required types for proper validation:
- int
- float
- string
- boolean
- dictionary (or anonymous object)
- list (or array)
DEFINITION = PRIMITIVE | LIST | DICTIONARY | TUPLE PRIMITIVE = ["nullable "] + ("int" | "str" | "float" | "bool") DICTIONARY = (dictionary of) key: DICTIONARY-KEY, value: DEFINITION DICTIONARY-KEY = (["optional "] + DICTIONARY-KEY-NAME) | "_any_" DICTIONARY-KEY-NAME = [A-Za-z0-9_]+ LIST = (list of one) DEFINITION TUPLE = (list of more than one) DEFINITION
definition: "int" example value: 5 definition: {"foo": "int"} example value: {"foo": 5} definition: [{"foo": ["bool"]}] example value: [{"foo": [True, False]}, {"foo": [False, False]}] definition: {"_any_": "int"} example value: {"foo": 5, "bar": 7} definition: ["int", "str"] example value: [5, "foo"]
Copyright 2011 LearningStation, Inc.
Licensed under the BSD-3 License. You may obtain a copy of the License in the LICENSE file.