-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtiago.py
executable file
·180 lines (153 loc) · 6.81 KB
/
tiago.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python3
from sensor_msgs.msg import CompressedImage
from utils.atomic_wrapper import ImageAtomicWrapper
from utils.face_and_mask_detector import FaceAndMaskDetector
from utils.talker import Talker
from utils.tracker import Tracker
from utils.temperature_checker import TemperatureChecker
from utils.looker import Looker
from utils.waiting_for_person import WaitingForPerson
from utils.checking_person import CheckingPerson
from utils.geometry import *
from numpy import fromstring, vstack, uint8
from argparse import ArgumentParser
from time import sleep
import cv2 as cv
import rospy
import sys
# Defines the command line arguments
arg_parser = ArgumentParser()
arg_parser.add_argument('-t', '--tracker', type = str, default = 'CSRT',
help = 'Tracker type: BOOSTING/MIL/KCF/TLD/MEDIANFLOW/MOSSE/CSRT.')
arg_parser.add_argument('-c', '--confidence', type = float, default = 0.5,
help = 'Minimum probability to filter weak detections.')
arg_parser.add_argument('-T', '--threshold', type = int, default = 60,
help = 'Minimum distance between the bounding boxes of the detector and tracker.')
arg_parser.add_argument('-v', '--value', type = int, default = 1,
help = 'Number of frames between tracker and detector sync.')
arg_parser.add_argument('-w', '--wait', type = int, default = 30,
help = 'Number of frames to wait before starting the tracker after a face is detected.')
arg_parser.add_argument('-s', '--state', type = int, default = 10,
help = 'Number of frames to wait before a message is displayed.')
arg_parser.add_argument('-m', '--move', type = int, default = 4,
help = 'Number of frames to wait before the head moves.')
args = vars(arg_parser.parse_args())
# Initialize the atomic wrappers thar are used to acquire the current frame
normal_wrapper = ImageAtomicWrapper()
temp_wrapper = ImageAtomicWrapper()
thermal_wrapper = ImageAtomicWrapper()
# Define the 4 variables that hold the data for the current frame
global image_timestamp
global thermal
global normal
global temp
def callback_normal(data: CompressedImage):
"""
Gets the normal image from the robot, decompress it and crops it to fit
the temperature data.
"""
global normal
global image_timestamp
normal_wrapper.set(cv.imdecode(fromstring(data.data, uint8), cv.IMREAD_COLOR))
normal = normal_wrapper.get()[HEIGHT_START:HEIGHT_END, WIDTH_START:WIDTH_END]
image_timestamp = data.header.stamp
def callback_thermal(data: CompressedImage):
"""
Gets the thermal image from the robot, decompress it and rescale to fit
the temperature data.
"""
global thermal
thermal_wrapper.set(cv.imdecode(fromstring(data.data, uint8), cv.IMREAD_COLOR))
thermal = cv.resize(thermal_wrapper.get(), (WIDTH_END - WIDTH_START, HEIGHT_END - HEIGHT_START),
interpolation = cv.INTER_NEAREST)
def callback_temp(data: CompressedImage):
"""
Gets the temperature data from the robot, decompress it and rescale to
fit the temperature data.
"""
global temp
temp_wrapper.set(cv.imdecode(fromstring(data.data, uint8), cv.IMREAD_ANYDEPTH))
temp = cv.resize(temp_wrapper.get(), (WIDTH_END - WIDTH_START, HEIGHT_END - HEIGHT_START),
interpolation = cv.INTER_NEAREST)
def reset(person_waiter: WaitingForPerson, person_checker: CheckingPerson, tracker: Tracker,
temp_checker: TemperatureChecker, looker: Looker):
"""
Resets the instances to their initial state.
"""
person_waiter.reset()
person_checker.reset()
temp_checker.reset()
tracker.reset()
looker.stop()
def video():
"""
Principal method of the program that reads the data streams, displays
the video streams to the user and other messages.
"""
global image_timestamp
global thermal
global normal
global temp
# Define the variable that remember the current state: 'waiting' that awaits
# for a person to enter the frame and 'person_detected' in which checks
# continuously if the wearer's mask is worn correctly.
current_state = 'waiting'
looker = Looker()
talker = Talker()
tracker = Tracker(args['tracker'])
detector = FaceAndMaskDetector(args['confidence'])
temp_checker = TemperatureChecker()
person_waiter = WaitingForPerson(tracker, detector, args['wait'])
person_checker = CheckingPerson(tracker, talker, detector, temp_checker, args['value'], args['wait'],
args['threshold'], args['state'], args['move'])
while True:
# Get current frames
normal_wrapper.set(normal)
curr_normal = normal_wrapper.get()
temp_wrapper.set(temp)
curr_temp = temp_wrapper.get()
thermal_wrapper.set(thermal)
curr_thermal = thermal_wrapper.get()
# While in the 'waiting' state check if a person is in the frame
if current_state == 'waiting':
person_waiter.run_prediction(curr_normal)
# If a person entered the frame, change the current state
if person_waiter.person_in_frame():
current_state = 'person_detected'
# While in the 'person_detected' state check if the person is wearing
# the mask properly.
if current_state == 'person_detected':
person_checker.check_person(curr_normal, curr_temp, looker, image_timestamp)
if person_checker.mask_ok:
print(f'{person_checker.temp_checker.get_temp()} C')
sleep(3)
person_checker.speak_temperature()
reset(person_waiter, person_checker, tracker, temp_checker, looker)
looker = Looker()
current_state = 'waiting'
elif person_checker.lost_tracking:
reset(person_waiter, person_checker, tracker, temp_checker, looker)
looker = Looker()
current_state = 'waiting'
frame = vstack((curr_normal, curr_thermal))
# Display the concatenated current frame
cv.imshow('Video stream', frame)
# Exit if Q pressed
if cv.waitKey(1) & 0xFF == ord('q'):
break
# Close the video stream, stops the thread that centers the camera on the
# face and exits the program
cv.destroyAllWindows()
looker.stop()
sys.exit(0)
def robot():
"""
Main method that initializes the node and connect to data streams.
"""
rospy.init_node('robot', anonymous = True)
rospy.Subscriber('/xtion/rgb/image_raw/compressed', CompressedImage, callback_normal)
rospy.Subscriber('/optris/thermal_image/compressed', CompressedImage, callback_temp)
rospy.Subscriber('/optris/thermal_image_view/compressed', CompressedImage, callback_thermal)
video()
if __name__ == '__main__':
robot()