-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval.py
436 lines (381 loc) · 22 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import sys
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import load_model, Model
from keras import metrics
from keras.datasets import cifar10, mnist, fashion_mnist
import scipy.io as sio
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances
from sklearn.metrics import roc_auc_score, roc_curve
from scipy.stats import gaussian_kde
import matplotlib.pyplot as plt
import pickle
from tqdm import tqdm
import seaborn as sns
import spacial_transformation as tr
import argparse
# add args
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-data', '--data',
type=str,
default='mnist',
help='Dataset: mnist/fmnist/cifar10')
parser.add_argument('-out', '--out',
type=str,
default='svhn',
help='Dataset: fmnist/mnist/svhn')
parser.add_argument('-model', '--model',
type=str,
default='conv',
help='Dataset: conv/vgg16/resnet')
parser.add_argument('-trans', '--trans',
type=str,
default='zoom',
help='Augmentation method. blur/contrast/bright/zoom/shear/translation')
parser.add_argument('-stage', '--stage', type=str, default='sia', help='stages: sia/quad')
parser.add_argument('-data_aug', help='use data augmentation', dest='data_aug', type=lambda x: (str(x).lower() in ['true','1', 'yes']), default=True)
parser.add_argument('-data_aug_adv', help='use data augmentation with adversarial examples', dest='data_aug_adv',
type=lambda x: (str(x).lower() in ['true','1', 'yes']), default=False)
parser.add_argument('-is_diff_data', help='use totally different dataset', dest='is_diff_data', type=lambda x: (str(x).lower() in ['true','1', 'yes']),
default=True)
parser.add_argument("--t_in", "-t_in", help="threshold of in-distribution", type=int, default=95)
parser.add_argument("--t_out", "-t_out", help="threshold of out-of-distribution", type=int, default=98)
parser.add_argument("-gpu", type=str, default='0')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu # set GPU Limits
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
print(args)
def load_dataset(args):
x_train_total = y_train_total = x_test_in = y_test_in = x_test_out = y_test_out = num_train = x_train_out = None
# load original data
if args.data == "mnist" or args.out == "mnist":
if args.data == "mnist":
(x_train_total, y_train_total), (x_test_in, y_test_in) = mnist.load_data()
num_train = 50000
x_train_total = x_train_total.reshape(-1, 28, 28, 1).astype("float32")
x_test_in = x_test_in.reshape(-1, 28, 28, 1).astype("float32")
else:
(x_train_out, _), (x_test_out, y_test_out) = mnist.load_data()
x_test_out = x_test_out.reshape(-1, 28, 28, 1).astype("float32")
x_train_out = x_train_out.reshape(-1, 28, 28, 1).astype("float32")
if args.data == "fmnist" or args.out == "fmnist":
if args.data == "fmnist":
(x_train_total, y_train_total), (x_test_in, y_test_in) = fashion_mnist.load_data()
num_train = 50000
x_train_total = x_train_total.reshape(-1, 28, 28, 1).astype("float32")
x_test_in = x_test_in.reshape(-1, 28, 28, 1).astype("float32")
else:
(x_train_out, _), (x_test_out, y_test_out) = fashion_mnist.load_data()
x_test_out = x_test_out.reshape(-1, 28, 28, 1).astype("float32")
x_train_out = x_train_out.reshape(-1, 28, 28, 1).astype("float32")
if args.data == "cifar10" or args.out == "cifar10":
if args.data == "cifar10":
(x_train_total, y_train_total), (x_test_in, y_test_in) = cifar10.load_data()
num_train = 40000
y_train_total = y_train_total.reshape([y_train_total.shape[0]])
y_test_in = y_test_in.reshape([y_test_in.shape[0]])
else:
(x_train_out, _), (x_test_out, y_test_out) = cifar10.load_data()
y_test_out = y_test_out.reshape([y_test_out.shape[0]])
if args.data == "svhn" or args.out == "svhn":
train_images = sio.loadmat('data/svhn/train_32x32.mat')
test_images = sio.loadmat('data/svhn/test_32x32.mat')
if args.data == "svhn":
x_train_total, y_train_total = train_images["X"], train_images["y"]
x_test_in, y_test_in = test_images["X"], test_images["y"]
x_train_total = np.transpose(x_train_total, (3, 0, 1, 2))
x_test_in = np.transpose(x_test_in, (3, 0, 1, 2))
# replace label "10" with label "0"
y_train_total[y_train_total == 10] = 0
y_test_in[y_test_in == 10] = 0
y_train_total = y_train_total.reshape([y_train_total.shape[0]])
y_test_in = y_test_in.reshape([y_test_in.shape[0]])
num_train = 63257
else:
x_test_out_all, y_test_out_all = test_images["X"], test_images["y"]
x_test_out_all = np.transpose(x_test_out_all, (3, 0, 1, 2))
x_test_out = x_test_out_all[:10000]
y_test_out_all[y_test_out_all == 10] = 0
y_test_out_all = y_test_out_all.reshape([y_test_out_all.shape[0]])
y_test_out = y_test_out_all[:10000]
x_train_out, _ = train_images["X"], train_images["y"]
x_train_out = np.transpose(x_train_out, (3, 0, 1, 2))
return x_train_total, y_train_total, x_test_in, y_test_in, x_test_out, y_test_out, num_train, x_train_out
def cal_metric_outlier(tp_idx, fp_idx, in_num, out_num):
TP = tp_idx.shape[0]
FP = fp_idx.shape[0]
FN = out_num - TP
TN = in_num - FP
TPR = TP * 1.0 / (TP + FN)
FPR = FP * 1.0 / (TN + FP)
TNR = TN * 1.0 / (FP + TN)
F1 = 2.0 * TP / (2 * TP + FN + FP)
print("TP:{}, FP:{}, TN:{}, FN:{}, TPR:{:.6f}, FPR:{:.6f}, TNR:{:.6f}, F1:{:.6f}".format(TP, FP, TN, FN, TPR, FPR,
TNR, F1))
y_true = np.zeros((in_num+out_num))
y_true[in_num:] += 1
y_pred = np.zeros((in_num+out_num))
y_pred[fp_idx] = 1
y_pred[(tp_idx + in_num)] = 1
auc = roc_auc_score(y_true, y_pred)
print("AUC score being: ", auc)
return auc, F1
def calc_dist(x, trains):
# Calculate distances
distances = np.empty(shape=(x.shape[0],))
index = []
for i in tqdm(range(x.shape[0])):
dises = np.sqrt(np.sum(np.asarray(x[i] - trains) ** 2, axis=1))
distance = np.sort(dises)[0]
index.append(np.argsort(dises)[0])
distances.put(i, distance)
return distances, index
def eval(args):
path_name = args.data + "/" + args.model
fileName = "./tmp/" + args.stage + "/" + path_name + "/" + args.trans + "/"
if not args.data_aug:
fileName = "./tmp/" + args.stage + "_noaug/" + path_name + "/" + args.trans + "/"
if args.data_aug_adv:
fileName = "./tmp/" + args.stage + "_adv/" + path_name + "/" + args.trans + "/"
dir = os.path.dirname(fileName)
if not os.path.exists(dir):
os.makedirs(dir)
save_dir = os.path.join(os.getcwd(), args.stage + '_models')
if not args.data_aug:
save_dir = os.path.join(os.getcwd(), args.stage + '_noaug_models')
if args.data_aug_adv:
save_dir = os.path.join(os.getcwd(), args.stage + '_adv_models')
model_name = args.data + '_' + args.model + '.h5'
filepath = os.path.join(save_dir, model_name)
model = load_model(filepath, compile=False)
x_train_total, y_train_total, x_test_in, y_test_in, x_test_out, y_test_out, num_train, x_train_out = load_dataset(args)
degrees_train_tot = np.load("./data/" + path_name + "/degree/" + args.trans + "_degrees_train.npy")
degrees_test = np.load("./data/" + path_name + "/degree/" + args.trans + "_degrees_test.npy")
if args.trans == "contrast":
max_degree = np.percentile(degrees_train_tot[np.where(degrees_train_tot != -1)[0]], 1)
mean_degree = np.mean(degrees_train_tot[np.where((degrees_train_tot != -1) & (degrees_train_tot != 1))[0]])
else:
max_degree = np.percentile(degrees_train_tot, 99)
mean_degree = np.mean(degrees_train_tot[np.where((degrees_train_tot != -1) & (degrees_train_tot != 0))[0]])
print("max_degree: {}".format(max_degree))
print("mean_degree: {}".format(mean_degree))
dispatcher = {'blur': tr.image_blur, "contrast": tr.image_contrast, "bright": tr.image_brightness, "zoom": tr.image_zoom, "translation": tr.image_translation_cropped, "shear": tr.image_shear_cropped}
x_train_tr = []
for idx in range(x_train_total.shape[0]):
if args.trans != "contrast" and degrees_train_tot[idx] != -1 and degrees_train_tot[idx] != 0:
image = dispatcher[args.trans](x_train_total[idx], degrees_train_tot[idx])
x_train_tr.append(image.astype(np.float))
elif args.trans == "contrast" and degrees_train_tot[idx] != -1 and degrees_train_tot[idx] != 1:
image = dispatcher[args.trans](x_train_total[idx], degrees_train_tot[idx])
x_train_tr.append(image.astype(np.float))
else:
# image = dispatcher[args.trans](x_train_total[idx], max_degree)
image = dispatcher[args.trans](x_train_total[idx], mean_degree)
x_train_tr.append(image.astype(np.float))
x_train_tr = np.array(x_train_tr)
if len(x_train_tr.shape) == 3:
x_train_tr = np.expand_dims(x_train_tr, axis=-1)
x_train_out = []
for idx in range(x_train_total.shape[0]):
if args.trans != "contrast":
if degrees_train_tot[idx] != -1 and degrees_train_tot[idx] != 0:
image = dispatcher[args.trans](x_train_total[idx], degrees_train_tot[idx] + max_degree)
x_train_out.append(image.astype(np.float))
else:
image = dispatcher[args.trans](x_train_total[idx], max_degree * 2)
x_train_out.append(image.astype(np.float))
if args.trans == "contrast":
if degrees_train_tot[idx] != -1 and degrees_train_tot[idx] != 1:
image = dispatcher[args.trans](x_train_total[idx], degrees_train_tot[idx] / 10.0)
x_train_out.append(image.astype(np.float))
else:
image = dispatcher[args.trans](x_train_total[idx], max_degree / 10.0)
x_train_out.append(image.astype(np.float))
x_train_out = np.array(x_train_out)
if len(x_train_out.shape) == 3:
x_train_out = np.expand_dims(x_train_out, axis=-1)
x_test_tr = []
for idx in range(x_test_in.shape[0]):
if args.trans != "contrast" and degrees_test[idx] != -1 and degrees_test[idx] != 0:
image = dispatcher[args.trans](x_test_in[idx], degrees_test[idx])
x_test_tr.append(image.astype(np.float))
elif args.trans == "contrast" and degrees_test[idx] != -1 and degrees_test[idx] != 1:
image = dispatcher[args.trans](x_test_in[idx], degrees_test[idx])
x_test_tr.append(image.astype(np.float))
else:
# image = dispatcher[args.trans](x_test_in[idx], max_degree)
image = dispatcher[args.trans](x_test_in[idx], mean_degree)
x_test_tr.append(image.astype(np.float))
x_test_tr = np.array(x_test_tr)
if len(x_test_tr.shape) == 3:
x_test_tr = np.expand_dims(x_test_tr, axis=-1)
np.save("./data/" + path_name + "/degree/" + args.trans + "_test.npy", x_test_tr)
if args.is_diff_data:
if x_test_out.shape[1] != x_test_in.shape[1]:
x_test_out = np.resize(x_test_out, x_test_in.shape)
else:
x_test_out = []
for idx in range(x_test_in.shape[0]):
if args.trans != "contrast":
if degrees_test[idx] != -1 and degrees_test[idx] != 0:
image = dispatcher[args.trans](x_test_in[idx], degrees_test[idx] + max_degree)
x_test_out.append(image.astype(np.float))
else:
image = dispatcher[args.trans](x_test_in[idx], max_degree * 2)
x_test_out.append(image.astype(np.float))
if args.trans == "contrast":
if degrees_test[idx] != -1 and degrees_test[idx] != 1:
image = dispatcher[args.trans](x_test_in[idx], degrees_test[idx] / 10.0)
x_test_out.append(image.astype(np.float))
else:
image = dispatcher[args.trans](x_test_in[idx], max_degree / 10.0)
x_test_out.append(image.astype(np.float))
x_test_out = np.array(x_test_out)
if len(x_test_out.shape) == 3:
x_test_out = np.expand_dims(x_test_out, axis=-1)
np.save("./data/" + path_name + "/degree/" + args.trans + "_out_test.npy", x_test_out)
x_train_total = x_train_total / 255.0
x_train_tr = x_train_tr / 255.0
x_train_out = x_train_out / 255.0
x_test_in = x_test_in / 255.0
x_test_tr = x_test_tr / 255.0
x_test_out = x_test_out / 255.0
x_train = x_train_total[:num_train]
x_valid = x_train_total[num_train:]
y_train = y_train_total[:num_train]
y_valid = y_train_total[num_train:]
anchor_images = x_test_in
positive_images = x_test_tr
negative_images = x_test_out
test_embeddings = model.predict([anchor_images, positive_images, negative_images])
embedding_dim = int(test_embeddings.shape[1] / 3)
anchor_embed = test_embeddings.T[:embedding_dim].T
positive_embed = test_embeddings.T[embedding_dim:2*embedding_dim].T
negative_embed = test_embeddings.T[2*embedding_dim:].T
test_in_embed = anchor_embed
test_tr_embed = positive_embed
test_out_embed = negative_embed
train_embeddings = model.predict([x_train_total, x_train_tr, x_train_out])
train_embed = train_embeddings.T[:embedding_dim].T[:num_train]
valid_embed = train_embeddings.T[:embedding_dim].T[num_train:]
train_tr_embed = train_embeddings.T[embedding_dim:2*embedding_dim].T[:num_train]
valid_tr_embed = train_embeddings.T[embedding_dim:2*embedding_dim].T[num_train:]
orig_model = load_model("./origin/" + args.data + "_" + args.model + ".h5")
preds_train = np.argmax(orig_model.predict(x_train), axis=1)
preds_val = np.argmax(orig_model.predict(x_valid), axis=1)
preds_in = np.argmax(orig_model.predict(x_test_in), axis=1)
preds_tr = np.argmax(orig_model.predict(x_test_tr), axis=1)
preds_out = np.argmax(orig_model.predict(x_test_out), axis=1)
print("Acc of train: {}".format(np.mean(preds_train == y_train)))
print("Acc of valid: {}".format(np.mean(preds_val == y_valid)))
print("Acc of test: {}".format(np.mean(preds_in == y_test_in)))
print("Acc of tr: {}".format(np.mean(preds_tr == y_test_in)))
print("Acc of out: {}".format(np.mean(preds_out == y_test_in)))
print("use min latent features")
if os.path.exists(fileName + "latent_min_val.npy"):
print("load distance")
distances_val = np.load(fileName + "latent_min_val.npy")
distances_in = np.load(fileName + "latent_min_in.npy")
distances_tr = np.load(fileName + "latent_min_tr_" + args.trans + ".npy")
distances_out = np.load(fileName + "latent_min_out_" + args.out + ".npy")
# distances_unrepair = np.load(fileName + "latent_min_unrepair_" + args.trans + ".npy")
distances_val_tr = np.load(fileName + "latent_min_val_tr.npy")
idx_val = np.load(fileName + "latent_idx_val.npy")
idx_in = np.load(fileName + "latent_idx_in.npy")
idx_tr = np.load(fileName + "latent_idx_tr_" + args.trans + ".npy")
idx_out = np.load(fileName + "latent_idx_out_" + args.out + ".npy")
# idx_unrepair = np.load(fileName + "latent_idx_unrepair_" + args.trans + ".npy")
idx_val_tr = np.load(fileName + "latent_idx_val_tr.npy")
else:
distances_val, idx_val = calc_dist(valid_embed, train_embed)
np.save(fileName + "latent_min_val.npy", distances_val)
np.save(fileName + "latent_idx_val.npy", idx_val)
distances_val_tr, idx_val_tr = calc_dist(valid_tr_embed, train_embed)
np.save(fileName + "latent_min_val_tr.npy", distances_val_tr)
np.save(fileName + "latent_idx_val_tr.npy", idx_val_tr)
distances_in, idx_in = calc_dist(test_in_embed, train_embed)
np.save(fileName + "latent_min_in.npy", distances_in)
np.save(fileName + "latent_idx_in.npy", idx_in)
distances_tr, idx_tr = calc_dist(test_tr_embed, train_embed)
np.save(fileName + "latent_min_tr_" + args.trans + ".npy", distances_tr)
np.save(fileName + "latent_idx_tr_" + args.trans + ".npy", idx_tr)
distances_out, idx_out = calc_dist(test_out_embed, train_embed)
np.save(fileName + "latent_min_out_" + args.out + ".npy", distances_out)
np.save(fileName + "latent_idx_out_" + args.out + ".npy", idx_out)
if not args.is_diff_data:
distances_unrepair, idx_unrepair = calc_dist(test_out_embed, train_embed)
np.save(fileName + "latent_min_unrepair_" + args.trans + ".npy", distances_unrepair)
np.save(fileName + "latent_idx_unrepair_" + args.trans + ".npy", idx_unrepair)
distances_train_tr = np.sqrt(np.sum(np.asarray(train_tr_embed - train_embed) ** 2, axis=1))
print("distances_train_tr shape: ", distances_train_tr.shape)
print("train_tr: min: {}, mean: {}. max: {}".format(np.min(distances_train_tr), np.mean(distances_train_tr), np.max(distances_train_tr)))
print("val: min: {}, mean: {}. max: {}".format(np.min(distances_val), np.mean(distances_val), np.max(distances_val)))
print("val_tr: min: {}, mean: {}. max: {}".format(np.min(distances_val_tr), np.mean(distances_val_tr),
np.max(distances_val_tr)))
print("in: min: {}, mean: {}. max: {}".format(np.min(distances_in), np.mean(distances_in), np.max(distances_in)))
print("tr: min: {}, mean: {}. max: {}".format(np.min(distances_tr), np.mean(distances_tr), np.max(distances_tr)))
print("out: min: {}, mean: {}. max: {}".format(np.min(distances_out), np.mean(distances_out), np.max(distances_out)))
if not args.is_diff_data:
print("unrepair: min: {}, mean: {}. max: {}".format(np.min(distances_unrepair), np.mean(distances_unrepair), np.max(distances_unrepair)))
distances_out, idx_out = distances_unrepair, idx_unrepair
y_true = np.zeros((distances_in.shape[0]+distances_out.shape[0]))
y_true[distances_in.shape[0]:] += 1
# outlier
threshold_out = np.percentile(distances_val, args.t_out)
print("threshold_out: {}, {}".format(args.t_out, threshold_out))
print("out-dataset ****************************")
tp_idx_out = np.where(distances_out > threshold_out)[0]
print("in-test")
fp_idx_in = np.where(distances_in > threshold_out)[0]
cal_metric_outlier(tp_idx_out, fp_idx_in, distances_in.shape[0], distances_out.shape[0])
y_pred = np.concatenate((distances_in, distances_out), axis=0)
auc = roc_auc_score(y_true, y_pred)
fpr, tpr, thresholds = roc_curve(y_true, y_pred)
TNR95 = 1 - fpr[np.argmax(tpr>=.95)]
print("AUC real: {}, TNR@TPR95: {}".format(auc, TNR95))
print("num of wrong in fp_in: {}".format(np.where(preds_in[fp_idx_in] != y_test_in[fp_idx_in])[0].shape[0]))
print("in-test with {}".format("blur"))
fp_idx_tr = np.where(distances_tr > threshold_out)[0]
cal_metric_outlier(tp_idx_out, fp_idx_tr, distances_tr.shape[0], distances_out.shape[0])
y_pred = np.concatenate((distances_tr, distances_out), axis=0)
auc = roc_auc_score(y_true, y_pred)
fpr, tpr, thresholds = roc_curve(y_true, y_pred)
TNR95 = 1 - fpr[np.argmax(tpr>=.95)]
print("AUC real: {}, TNR@TPR95: {}".format(auc, TNR95))
print("num of wrong in fp_tr: {}".format(np.where(preds_tr[fp_idx_tr] != y_test_in[fp_idx_tr])[0].shape[0]))
threshold_in = np.percentile(distances_val, args.t_in)
print("\nthreshold_in: {}, {}".format(args.t_in, threshold_in))
print("in-test with {} **********************************".format("blur"))
fp_idx_in = np.where(distances_in > threshold_in)[0]
tp_idx_tr = np.where(distances_tr > threshold_in)[0]
cal_metric_outlier(tp_idx_tr, fp_idx_in, distances_tr.shape[0], distances_out.shape[0])
y_pred = np.concatenate((distances_in, distances_tr), axis=0)
auc = roc_auc_score(y_true, y_pred)
fpr, tpr, thresholds = roc_curve(y_true, y_pred)
TNR95 = 1 - fpr[np.argmax(tpr>=.95)]
print("AUC real: {}, TNR@TPR95: {}".format(auc, TNR95))
print("num of wrong in fp_idx_in: {}".format(np.where(preds_in[fp_idx_in] != y_test_in[fp_idx_in])[0].shape[0]))
fn_idx_tr = np.where(distances_tr <= threshold_in)[0]
tn_idx_in = np.where(distances_in <= threshold_in)[0]
tp_right = np.sum(y_train[idx_tr][tp_idx_tr] == y_test_in[tp_idx_tr])
fp_right = np.sum(y_train[idx_in][fp_idx_in] == y_test_in[fp_idx_in])
fn_right = np.sum(preds_tr[fn_idx_tr] == y_test_in[fn_idx_tr])
tn_right = np.sum(preds_in[tn_idx_in] == y_test_in[tn_idx_in])
revised_count = tp_right + fp_right + fn_right + tn_right
print("acc: {}, tp_right: {}, fp_right: {}, fn_right: {}, tn_right: {}".format(revised_count / (2 * y_test_in.shape[0]), tp_right, fp_right, fn_right, tn_right))
orig_count = np.sum(preds_in == y_test_in) + np.sum(preds_tr == y_test_in)
print("orig acc: {}, orig in count: {}, orig tr count: {}".format(orig_count / (2 * y_test_in.shape[0]), np.sum(preds_in == y_test_in), np.sum(preds_tr == y_test_in)))
perfect_count = np.sum(preds_in == y_test_in) + np.sum(y_train[idx_tr] == y_test_in)
print("perf acc: {}, revised tr count: {}".format(perfect_count / (2 * y_test_in.shape[0]), np.sum(y_train[idx_tr] == y_test_in)))
print("revised val count: {}".format(np.sum(y_train[idx_val] == y_valid)))
print("revised in count: {}".format(np.sum(y_train[idx_in] == y_test_in)))
print("revised out count: {}".format(np.sum(y_train[idx_out] == y_test_in)))
revised_in = fp_right + tn_right
revised_tr = tp_right + fn_right
print("revised_in: ", revised_in, "revised_tr: ", revised_tr)
if __name__ == '__main__':
eval(args)