-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtriplet_loss.py
411 lines (317 loc) · 19 KB
/
triplet_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
"""Define functions to create the triplet loss with online triplet mining."""
import tensorflow as tf
from tensorflow.python.ops import array_ops, math_ops
def _pairwise_distances(ebd, ebd_an, squared=False):
"""Compute the 2D matrix of distances between all the embeddings.
Args:
embeddings: tensor of shape (batch_size, embed_dim)
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
If false, output is the pairwise euclidean distance matrix.
Returns:
pairwise_distances: tensor of shape (batch_size, batch_size)
"""
# x = tf.expand_dims(ebd, 1)
# shape = tf.shape(ebd_a)[0]
# x = tf.keras.backend.repeat_elements(tf.expand_dims(ebd, 1), shape, axis=1)
# distances = tf.reduce_sum(tf.square((x - ebd_a), 2), axis=2)
# Get the dot product between all embeddings
# shape (batch_size, batch_size)
dot_product = tf.matmul(ebd, tf.transpose(ebd_an))
# # Get squared L2 norm for each embedding. We can just take the diagonal of `dot_product`.
# # This also provides more numerical stability (the diagonal of the result will be exactly 0).
# # shape (batch_size,)
# square_norm = tf.diag_part(dot_product)
#
# # Compute the pairwise distance matrix as we have:
# # ||a - b||^2 = ||a||^2 - 2 <a, b> + ||b||^2
# # shape (batch_size, batch_size)
# distances = tf.expand_dims(square_norm, 1) - 2.0 * dot_product + tf.expand_dims(square_norm, 0)
square_norm_a = tf.diag_part(tf.matmul(ebd, tf.transpose(ebd)))
square_norm_b = tf.diag_part(tf.matmul(ebd_an, tf.transpose(ebd_an)))
distances = tf.expand_dims(square_norm_a, 1) - 2.0 * dot_product + tf.expand_dims(square_norm_b, 0)
# Because of computation errors, some distances might be negative so we put everything >= 0.0
distances = tf.maximum(distances, 0.0)
if not squared:
# Because the gradient of sqrt is infinite when distances == 0.0 (ex: on the diagonal)
# we need to add a small epsilon where distances == 0.0
mask = tf.to_float(tf.equal(distances, 0.0))
distances = distances + mask * 1e-16
distances = tf.sqrt(distances)
# Correct the epsilon added: set the distances on the mask to be exactly 0.0
distances = distances * (1.0 - mask)
return distances
def _get_anchor_positive_triplet_mask(labels):
"""Return a 2D mask where mask[a, p] is True iff a and p are distinct and have same label.
Args:
labels: tf.int32 `Tensor` with shape [batch_size]
Returns:
mask: tf.bool `Tensor` with shape [batch_size, batch_size]
"""
# Check that i and j are distinct
indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool)
indices_not_equal = tf.logical_not(indices_equal)
# Check if labels[i] == labels[j]
# Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1)
labels_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1))
# Combine the two masks
mask = tf.logical_and(indices_not_equal, labels_equal)
return mask
def _get_anchor_negative_triplet_mask(labels):
"""Return a 2D mask where mask[a, n] is True iff a and n have distinct labels.
Args:
labels: tf.int32 `Tensor` with shape [batch_size]
Returns:
mask: tf.bool `Tensor` with shape [batch_size, batch_size]
"""
# Check if labels[i] != labels[k]
# Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1)
labels_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1))
mask = tf.logical_not(labels_equal)
return mask
def _get_negative_negative_triplet_mask(labels):
"""Return a 3D mask where mask[a, p, n] is True iff the triplet (a, p, n) is valid.
A triplet (i, j, k) is valid if:
- i, j, k are distinct
- labels[i] != labels[j] and labels[i] != labels[k] and labels[j] != labels[k]
Args:
labels: tf.int32 `Tensor` with shape [batch_size]
"""
# Check that i, j and k are distinct
indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool)
indices_not_equal = tf.logical_not(indices_equal)
i_not_equal_j = tf.expand_dims(indices_not_equal, 2)
i_not_equal_k = tf.expand_dims(indices_not_equal, 1)
j_not_equal_k = tf.expand_dims(indices_not_equal, 0)
distinct_indices = tf.logical_and(tf.logical_and(i_not_equal_j, i_not_equal_k), j_not_equal_k)
# Check if labels[i] != labels[j] and labels[i] != labels[k] and labels[j] != labels[k]
label_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1))
i_equal_j = tf.expand_dims(label_equal, 2)
i_equal_k = tf.expand_dims(label_equal, 1)
j_equal_k = tf.expand_dims(label_equal, 0)
valid_labels = tf.logical_and(tf.logical_and(tf.logical_not(i_equal_j), tf.logical_not(i_equal_k)), tf.logical_not(j_equal_k))
# Combine the two masks
mask = tf.logical_and(distinct_indices, valid_labels)
return mask
def _get_triplet_mask(labels):
"""Return a 3D mask where mask[a, p, n] is True iff the triplet (a, p, n) is valid.
A triplet (i, j, k) is valid if:
- i, j, k are distinct
- labels[i] == labels[j] and labels[i] != labels[k]
Args:
labels: tf.int32 `Tensor` with shape [batch_size]
"""
# Check that i, j and k are distinct
indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool)
indices_not_equal = tf.logical_not(indices_equal)
i_not_equal_j = tf.expand_dims(indices_not_equal, 2)
i_not_equal_k = tf.expand_dims(indices_not_equal, 1)
j_not_equal_k = tf.expand_dims(indices_not_equal, 0)
distinct_indices = tf.logical_and(tf.logical_and(i_not_equal_j, i_not_equal_k), j_not_equal_k)
# Check if labels[i] == labels[j] and labels[i] != labels[k]
label_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1))
i_equal_j = tf.expand_dims(label_equal, 2)
i_equal_k = tf.expand_dims(label_equal, 1)
valid_labels = tf.logical_and(i_equal_j, tf.logical_not(i_equal_k))
# Combine the two masks
mask = tf.logical_and(distinct_indices, valid_labels)
return mask
def batch_hard_triplet_loss(labels, ebd_anchor, ebd_positive, ebd_negative, margin, squared=False):
"""Build the triplet loss over a batch of embeddings.
For each anchor, we get the hardest positive and hardest negative to form a triplet.
Args:
labels: labels of the batch, of size (batch_size,)
embeddings: tensor of shape (batch_size, embed_dim)
margin: margin for triplet loss
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
If false, output is the pairwise euclidean distance matrix.
Returns:
triplet_loss: scalar tensor containing the triplet loss
"""
# Get the pairwise distance matrix
pairwise_dist_ap = _pairwise_distances(ebd_positive, ebd_anchor, squared=squared)
pairwise_dist_an = _pairwise_distances(ebd_negative, ebd_anchor, squared=squared)
# For each anchor, get the hardest positive
# First, we need to get a mask for every valid positive (they should have same label)
mask_anchor_positive = _get_anchor_positive_triplet_mask(labels)
mask_anchor_positive = tf.to_float(mask_anchor_positive)
# We put to 0 any element where (a, p) is not valid (valid if a != p and label(a) == label(p))
anchor_positive_dist = tf.multiply(mask_anchor_positive, pairwise_dist_ap)
# shape (batch_size, 1)
hardest_positive_dist = tf.reduce_max(anchor_positive_dist, axis=1, keepdims=True)
tf.summary.scalar("hardest_positive_dist", tf.reduce_mean(hardest_positive_dist))
# hardest_positive_dist = tf.reduce_max(pairwise_dist_ap, axis=1, keepdims=True)
# For each anchor, get the hardest negative
# First, we need to get a mask for every valid negative (they should have different labels)
mask_anchor_negative = _get_anchor_negative_triplet_mask(labels)
mask_anchor_negative = tf.to_float(mask_anchor_negative)
# We add the maximum value in each row to the invalid negatives (label(a) == label(n))
max_anchor_negative_dist = tf.reduce_max(pairwise_dist_an, axis=1, keepdims=True)
anchor_negative_dist = pairwise_dist_an + max_anchor_negative_dist * (1.0 - mask_anchor_negative)
# shape (batch_size,)
hardest_negative_dist = tf.reduce_min(anchor_negative_dist, axis=1, keepdims=True)
tf.summary.scalar("hardest_negative_dist", tf.reduce_mean(hardest_negative_dist))
# hardest_negative_dist = tf.reduce_min(pairwise_dist_an, axis=1, keepdims=True)
# Combine biggest d(a, p) and smallest d(a, n) into final triplet loss
triplet_loss = tf.maximum(hardest_positive_dist - hardest_negative_dist + margin, 0.0)
# Get final mean triplet loss
triplet_loss = tf.reduce_mean(triplet_loss)
return triplet_loss
def batch_hard_triplet_loss_c1c2_c1c(labels, ebd_anchor, ebd_positive, ebd_negative, margin, squared=False):
"""Build the triplet loss over a batch of embeddings.
For each anchor, we get the hardest positive and hardest negative to form a triplet.
Args:
labels: labels of the batch, of size (batch_size,)
embeddings: tensor of shape (batch_size, embed_dim)
margin: margin for triplet loss
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
If false, output is the pairwise euclidean distance matrix.
Returns:
triplet_loss: scalar tensor containing the triplet loss
"""
# Get the pairwise distance matrix
pairwise_dist_ap = _pairwise_distances(ebd_positive, ebd_anchor, squared=squared)
pairwise_dist_an = _pairwise_distances(ebd_negative, ebd_anchor, squared=squared)
# For each anchor, get the hardest positive
# First, we need to get a mask for every valid positive (they should have same label)
mask_anchor_positive = _get_anchor_positive_triplet_mask(labels)
mask_anchor_positive = tf.to_float(mask_anchor_positive)
# We put to 0 any element where (a, p) is not valid (valid if a != p and label(a) == label(p))
anchor_positive_dist = tf.multiply(mask_anchor_positive, pairwise_dist_ap)
# shape (batch_size, 1)
hardest_positive_dist = tf.reduce_max(anchor_positive_dist, axis=1, keepdims=True)
tf.summary.scalar("hardest_positive_dist", tf.reduce_mean(hardest_positive_dist))
# For each anchor, get the hardest negative
# First, we need to get a mask for every valid negative (they should be same images)
# indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool)
# mask_anchor_negative = tf.to_float(indices_equal)
labels_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1))
mask_anchor_negative = tf.to_float(labels_equal)
# We add the maximum value in each row to the invalid negatives (different images / label(a) == label(n))
max_anchor_negative_dist = tf.reduce_max(pairwise_dist_an, axis=1, keepdims=True)
anchor_negative_dist = pairwise_dist_an + max_anchor_negative_dist * (1.0 - mask_anchor_negative)
# shape (batch_size,)
hardest_negative_dist = tf.reduce_min(anchor_negative_dist, axis=1, keepdims=True)
tf.summary.scalar("hardest_negative_dist", tf.reduce_mean(hardest_negative_dist))
# Combine biggest d(a, p) and smallest d(a, n) into final triplet loss
triplet_loss = tf.maximum(hardest_positive_dist - hardest_negative_dist + margin, 0.0)
# Get final mean triplet loss
triplet_loss = tf.reduce_mean(triplet_loss)
return triplet_loss
def batch_hard_triplet_loss_c1c_c1c2(labels, ebd_anchor, ebd_positive, ebd_negative, margin, squared=False):
"""Build the triplet loss over a batch of embeddings.
For each anchor, we get the hardest positive and hardest negative to form a triplet.
Args:
labels: labels of the batch, of size (batch_size,)
embeddings: tensor of shape (batch_size, embed_dim)
margin: margin for triplet loss
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
If false, output is the pairwise euclidean distance matrix.
Returns:
triplet_loss: scalar tensor containing the triplet loss
"""
# Get the pairwise distance matrix
pairwise_dist_ap = _pairwise_distances(ebd_positive, ebd_anchor, squared=squared)
pairwise_dist_an = _pairwise_distances(ebd_negative, ebd_anchor, squared=squared)
# For each anchor, get the hardest positive
# First, we need to get a mask for every valid positive (they should have same label)
labels_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1))
mask_anchor_positive = tf.to_float(labels_equal)
# We put to 0 any element where (a, p) is not valid (valid if a != p and label(a) == label(p))
anchor_positive_dist = tf.multiply(mask_anchor_positive, pairwise_dist_ap)
# shape (batch_size, 1)
hardest_positive_dist = tf.reduce_max(anchor_positive_dist, axis=1, keepdims=True)
tf.summary.scalar("hardest_positive_dist", tf.reduce_mean(hardest_positive_dist))
# For each anchor, get the hardest negative
# First, we need to get a mask for every valid negative (they should be distinct and same label)
mask_anchor_negative = _get_anchor_positive_triplet_mask(labels)
mask_anchor_negative = tf.to_float(mask_anchor_negative)
# We add the maximum value in each row to the invalid negatives (different images / label(a) == label(n))
max_anchor_negative_dist = tf.reduce_max(pairwise_dist_an, axis=1, keepdims=True)
anchor_negative_dist = pairwise_dist_an + max_anchor_negative_dist * (1.0 - mask_anchor_negative)
# shape (batch_size,)
hardest_negative_dist = tf.reduce_min(anchor_negative_dist, axis=1, keepdims=True)
tf.summary.scalar("hardest_negative_dist", tf.reduce_mean(hardest_negative_dist))
# Combine biggest d(a, p) and smallest d(a, n) into final triplet loss
triplet_loss = tf.maximum(hardest_positive_dist - hardest_negative_dist - margin, 0.0)
# Get final mean triplet loss
triplet_loss = tf.reduce_mean(triplet_loss)
return triplet_loss
def batch_hard_triplet_loss_cde(labels, ebd_anchor, ebd_positive, ebd_negative, margin, squared=False):
"""Build the triplet loss over a batch of embeddings.
For each anchor, we get the hardest positive and hardest negative to form a triplet.
Args:
labels: labels of the batch, of size (batch_size,)
embeddings: tensor of shape (batch_size, embed_dim)
margin: margin for triplet loss
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
If false, output is the pairwise euclidean distance matrix.
Returns:
triplet_loss: scalar tensor containing the triplet loss
"""
# Get the pairwise distance matrix
pairwise_dist_ap = _pairwise_distances(ebd_positive, ebd_anchor, squared=squared)
pairwise_dist_an = _pairwise_distances(ebd_negative, ebd_anchor, squared=squared)
# For each anchor, get the hardest positive
# First, we need to get a mask for every valid positive (they should have same label)
mask_anchor_positive = _get_anchor_positive_triplet_mask(labels)
mask_anchor_positive = tf.to_float(mask_anchor_positive)
# We put to 0 any element where (a, p) is not valid (valid if a != p and label(a) == label(p))
anchor_positive_dist = tf.multiply(mask_anchor_positive, pairwise_dist_ap)
# shape (batch_size, 1)
hardest_positive_dist = tf.reduce_max(anchor_positive_dist, axis=1, keepdims=True)
tf.summary.scalar("hardest_positive_dist", tf.reduce_mean(hardest_positive_dist))
# For each anchor, get the hardest negative
# First, we need to get a mask for every valid negative (they should have different labels)
mask_negative_negative = _get_negative_negative_triplet_mask(labels)
mask_negative_negative = tf.to_float(mask_negative_negative)
# We add the maximum value in each row to the invalid negatives (label(a) == label(n))
max_anchor_negative_dist = tf.reduce_max(pairwise_dist_an, keepdims=True)
anchor_negative_dist = pairwise_dist_an + max_anchor_negative_dist * (1.0 - mask_negative_negative)
# shape (batch_size,)
hardest_negative_dist = tf.reduce_min(tf.reduce_min(anchor_negative_dist, axis=2, keepdims=True), axis=1)
tf.summary.scalar("hardest_negative_dist", tf.reduce_mean(hardest_negative_dist))
# Combine biggest d(a, p) and smallest d(a, n) into final triplet loss
triplet_loss = tf.maximum(hardest_positive_dist - hardest_negative_dist + margin, 0.0)
# Get final mean triplet loss
triplet_loss = tf.reduce_mean(triplet_loss)
return triplet_loss
def batch_hard_triplet_loss_new(labels, ebd_anchor, ebd_positive, ebd_negative, margin, squared=False):
"""Build the triplet loss over a batch of embeddings.
For each anchor, we get the hardest positive and hardest negative to form a triplet.
Args:
labels: labels of the batch, of size (batch_size,)
embeddings: tensor of shape (batch_size, embed_dim)
margin: margin for triplet loss
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
If false, output is the pairwise euclidean distance matrix.
Returns:
triplet_loss: scalar tensor containing the triplet loss
"""
# Get the pairwise distance matrix
pairwise_dist_ap = _pairwise_distances(ebd_positive, ebd_anchor, squared=squared)
pairwise_dist_an = _pairwise_distances(ebd_negative, ebd_anchor, squared=squared)
# For each anchor, get the hardest positive
# First, we need to get a mask for every valid positive (they should have same original input)
# Check that i and j are same
indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool)
mask_anchor_positive = tf.to_float(indices_equal)
# We put to 0 any element where (a, p) is not valid (valid if a == p)
anchor_positive_dist = tf.multiply(mask_anchor_positive, pairwise_dist_ap)
# shape (batch_size, 1)
hardest_positive_dist = tf.reduce_max(anchor_positive_dist, axis=1, keepdims=True)
tf.summary.scalar("hardest_positive_dist", tf.reduce_mean(hardest_positive_dist))
# For each anchor, get the hardest negative
# First, we need to get a mask for every valid negative (they should have same labels)
mask_anchor_negative = _get_anchor_positive_triplet_mask(labels)
mask_anchor_negative = tf.to_float(mask_anchor_negative)
# We add the maximum value in each row to the invalid negatives (label(a) == label(n))
max_anchor_negative_dist = tf.reduce_max(pairwise_dist_an, axis=1, keepdims=True)
anchor_negative_dist = pairwise_dist_an + max_anchor_negative_dist * (1.0 - mask_anchor_negative)
# shape (batch_size,)
hardest_negative_dist = tf.reduce_min(anchor_negative_dist, axis=1, keepdims=True)
tf.summary.scalar("hardest_negative_dist", tf.reduce_mean(hardest_negative_dist))
# Combine biggest d(a, p) and smallest d(a, n) into final triplet loss
triplet_loss = tf.maximum(hardest_positive_dist - hardest_negative_dist + margin, 0.0)
# Get final mean triplet loss
triplet_loss = tf.reduce_mean(triplet_loss)
return triplet_loss