-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnbody.cpp
483 lines (405 loc) · 15.7 KB
/
nbody.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
/*****************************************************************************
MIT License
Copyright (c) 2023 CSC HPC
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*******************************************************************************/
/* Simple MPI and OpenMP parallel N-body simulation
Brute-force N^2 algorithm, MPI parallelization with nearest neighbour chain
Time integration with leap frog method
*/
#include <omp.h>
#include <iostream>
#include <vector>
#include "myvector.hpp"
#include <array>
#include <cmath>
#include <random>
#include <mpi.h>
#ifdef USE_MYVECTOR
using namespace my;
#else
using namespace std;
#endif
constexpr double softening = 1.0e-6;
struct Timing
{
double mpi_time;
double compute_time;
};
template<typename T>
struct Bodies
{
vector<T> my_masses;
vector<T> others_masses;
vector<T> my_positions_x;
vector<T> my_positions_y;
vector<T> my_positions_z;
// positions of neighbouring MPI task
vector<T> others_positions_x;
vector<T> others_positions_y;
vector<T> others_positions_z;
vector<T> velocities_x;
vector<T> velocities_y;
vector<T> velocities_z;
vector<T> accelerations_x;
vector<T> accelerations_y;
vector<T> accelerations_z;
size_t nbodies;
// Default constructor
Bodies() = default;
// Allocate at the time of constuction
Bodies(int n) : nbodies(n) {
my_masses.resize(n);
others_masses.resize(n);
my_positions_x.resize(n);
my_positions_y.resize(n);
my_positions_z.resize(n);
others_positions_x.resize(n);
others_positions_y.resize(n);
others_positions_z.resize(n);
velocities_x.resize(n);
velocities_y.resize(n);
velocities_z.resize(n);
accelerations_x.resize(n);
accelerations_y.resize(n);
accelerations_z.resize(n);
};
};
template <class T>
void initialize(Bodies<T> &bodies)
{
// in order to better compare different parallelizations
// rank 0 initializes all random data
int ntasks, rank;
MPI_Comm_size(MPI_COMM_WORLD, &ntasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
size_t nbodies = bodies.nbodies;
vector<T> all_masses;
vector<T> all_positions_x;
vector<T> all_positions_y;
vector<T> all_positions_z;
vector<T> all_velocities_x;
vector<T> all_velocities_y;
vector<T> all_velocities_z;
if (0 == rank) {
all_masses.resize(nbodies * ntasks);
all_positions_x.resize(nbodies * ntasks);
all_positions_y.resize(nbodies * ntasks);
all_positions_z.resize(nbodies * ntasks);
all_velocities_x.resize(nbodies * ntasks);
all_velocities_y.resize(nbodies * ntasks);
all_velocities_z.resize(nbodies * ntasks);
std::mt19937 engine(4);
// For masses let's use normal distribution
std::normal_distribution<> mass_dist(20, 8);
// For positions and velocity uniform distribution
std::uniform_real_distribution<T> pos_dist(-1000, 1000);
std::uniform_real_distribution<T> vel_dist(-100, 100);
for (size_t i = 0; i < nbodies * ntasks; i++) {
all_masses[i] = mass_dist(engine);
all_positions_x[i] = pos_dist(engine);
all_positions_y[i] = pos_dist(engine);
all_positions_z[i] = pos_dist(engine);
all_velocities_x[i] = vel_dist(engine);
all_velocities_y[i] = vel_dist(engine);
all_velocities_z[i] = vel_dist(engine);
}
}
MPI_Scatter(all_masses.data(), nbodies, MPI_DOUBLE,
bodies.my_masses.data(), nbodies, MPI_DOUBLE,
0, MPI_COMM_WORLD);
MPI_Scatter(all_positions_x.data(), nbodies, MPI_DOUBLE,
bodies.my_positions_x.data(), nbodies, MPI_DOUBLE,
0, MPI_COMM_WORLD);
MPI_Scatter(all_positions_y.data(), nbodies, MPI_DOUBLE,
bodies.my_positions_y.data(), nbodies, MPI_DOUBLE,
0, MPI_COMM_WORLD);
MPI_Scatter(all_positions_z.data(), nbodies, MPI_DOUBLE,
bodies.my_positions_z.data(), nbodies, MPI_DOUBLE,
0, MPI_COMM_WORLD);
MPI_Scatter(all_velocities_x.data(), nbodies, MPI_DOUBLE,
bodies.velocities_x.data(), nbodies, MPI_DOUBLE,
0, MPI_COMM_WORLD);
MPI_Scatter(all_velocities_y.data(), nbodies, MPI_DOUBLE,
bodies.velocities_y.data(), nbodies, MPI_DOUBLE,
0, MPI_COMM_WORLD);
MPI_Scatter(all_velocities_z.data(), nbodies, MPI_DOUBLE,
bodies.velocities_z.data(), nbodies, MPI_DOUBLE,
0, MPI_COMM_WORLD);
// everybody initializes its own accelerations
for (size_t i = 0; i < bodies.nbodies; i++)
{
bodies.accelerations_x[i] = 0.0;
bodies.accelerations_y[i] = 0.0;
bodies.accelerations_z[i] = 0.0;
}
}
template <class T>
T energy(Bodies<T> &bodies)
{
T kinetic_energy = 0.0;
T potential_energy = 0.0;
// Kinetic energy is local, so everybody calculates its own part
for (size_t i=0; i < bodies.nbodies; i++) {
// kinetic energy
kinetic_energy += 0.5 * bodies.my_masses[i] *
( bodies.velocities_x[i] * bodies.velocities_x[i] +
bodies.velocities_y[i] * bodies.velocities_y[i] +
bodies.velocities_z[i] * bodies.velocities_z[i] );
}
MPI_Allreduce(MPI_IN_PLACE, &kinetic_energy, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
// quick and dirty parallelization: rank 0 gathers all
// positions and calculates potential energy
int ntasks, rank;
MPI_Comm_size(MPI_COMM_WORLD, &ntasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
size_t nbodies = bodies.nbodies;
size_t all_nbodies = bodies.nbodies * ntasks;
vector<T> all_masses;
vector<T> all_positions_x;
vector<T> all_positions_y;
vector<T> all_positions_z;
if (0 == rank) {
all_masses.resize(nbodies * ntasks);
all_positions_x.resize(nbodies * ntasks);
all_positions_y.resize(nbodies * ntasks);
all_positions_z.resize(nbodies * ntasks);
}
MPI_Gather(bodies.my_masses.data(), nbodies, MPI_DOUBLE,
all_masses.data(), nbodies, MPI_DOUBLE,
0, MPI_COMM_WORLD);
MPI_Gather(bodies.my_positions_x.data(), nbodies, MPI_DOUBLE,
all_positions_x.data(), nbodies, MPI_DOUBLE,
0, MPI_COMM_WORLD);
MPI_Gather(bodies.my_positions_y.data(), nbodies, MPI_DOUBLE,
all_positions_y.data(), nbodies, MPI_DOUBLE,
0, MPI_COMM_WORLD);
MPI_Gather(bodies.my_positions_z.data(), nbodies, MPI_DOUBLE,
all_positions_z.data(), nbodies, MPI_DOUBLE,
0, MPI_COMM_WORLD);
// potential energy
if (0 == rank) {
for (size_t i=0; i < all_nbodies; i++) {
for (size_t j=i; j < all_nbodies; j++) {
auto delta_x = all_positions_x[i] - all_positions_x[j];
auto delta_y = all_positions_y[i] - all_positions_y[j];
auto delta_z = all_positions_z[i] - all_positions_z[j];
auto distance = sqrt(delta_x*delta_x + delta_y*delta_y + delta_z*delta_z);
potential_energy += -all_masses[i] * all_masses[j] / (distance + softening);
}
}
}
MPI_Bcast(&potential_energy, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
return (kinetic_energy + potential_energy) / (all_nbodies);
}
template <class T>
T average_velocity(Bodies<T> &bodies)
{
T v_ave = 0.0;
for (size_t i=0; i < bodies.nbodies; i++) {
v_ave += sqrt(bodies.velocities_x[i] * bodies.velocities_x[i] +
bodies.velocities_y[i] * bodies.velocities_y[i] +
bodies.velocities_z[i] * bodies.velocities_z[i]);
}
MPI_Allreduce(MPI_IN_PLACE, &v_ave, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
return v_ave;
}
template <class T>
Timing simulate(Bodies<T> &bodies, int niters)
{
Timing timing;
double t0, t1;
timing.mpi_time = 0.0;
timing.compute_time = 0.0;
// Leap-frog integration
const T dt = 0.2;
int ntasks;
int rank;
MPI_Comm_size(MPI_COMM_WORLD, &ntasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
// Neighbouring ranks
int dst = (rank + 1) % ntasks;
int src = (rank - 1 + ntasks) % ntasks;
size_t nbodies = bodies.nbodies;
#pragma omp parallel
for (int n=0; n < niters; n++) {
#pragma omp master
t0 = MPI_Wtime();
#pragma omp for simd schedule(static)
for (size_t i=0; i < nbodies; i++) {
// kick and step
bodies.velocities_x[i] += 0.5*dt * bodies.accelerations_x[i];
bodies.velocities_y[i] += 0.5*dt * bodies.accelerations_y[i];
bodies.velocities_z[i] += 0.5*dt * bodies.accelerations_z[i];
bodies.my_positions_x[i] += dt * bodies.velocities_x[i];
bodies.my_positions_y[i] += dt * bodies.velocities_y[i];
bodies.my_positions_z[i] += dt * bodies.velocities_z[i];
// At the start of iteration we calculate forces within "own" block
bodies.others_positions_x[i] = bodies.my_positions_x[i];
bodies.others_positions_y[i] = bodies.my_positions_y[i];
bodies.others_positions_z[i] = bodies.my_positions_z[i];
bodies.others_masses[i] = bodies.my_masses[i];
}
#pragma omp master
{
t1 = MPI_Wtime();
timing.compute_time += t1 - t0;
}
// calculate accelerations
#pragma omp for simd schedule(static)
for (size_t i = 0; i < bodies.nbodies; i++) {
bodies.accelerations_x[i] = 0.0;
bodies.accelerations_y[i] = 0.0;
bodies.accelerations_z[i] = 0.0;
}
for (int nblock = 0; nblock < ntasks; nblock++) {
#pragma omp master
t0 = MPI_Wtime();
#pragma omp for schedule(static) nowait
for (size_t i=0; i < nbodies; i++) {
T acc_x = 0.0, acc_y = 0.0, acc_z = 0.0;
#pragma omp simd reduction(+:acc_x, acc_y, acc_z)
for (size_t j=0; j < nbodies; j++) {
auto delta_x = bodies.my_positions_x[i] - bodies.others_positions_x[j];
auto delta_y = bodies.my_positions_y[i] - bodies.others_positions_y[j];
auto delta_z = bodies.my_positions_z[i] - bodies.others_positions_z[j];
auto distance2 = delta_x*delta_x + delta_y*delta_y + delta_z*delta_z;
auto s = bodies.others_masses[j] / (distance2 * sqrt(distance2) + softening);
acc_x += s * delta_x;
acc_y += s * delta_y;
acc_z += s * delta_z;
}
bodies.accelerations_x[i] += acc_x;
bodies.accelerations_y[i] += acc_y;
bodies.accelerations_z[i] += acc_z;
}
#pragma omp master
{
t1 = MPI_Wtime();
timing.compute_time += t1 - t0;
}
#pragma omp master
t0 = MPI_Wtime();
// communication
#pragma omp master
if (nblock < ntasks - 1){
MPI_Sendrecv_replace(bodies.others_positions_x.data(), nbodies, MPI_DOUBLE,
dst, 1, src, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Sendrecv_replace(bodies.others_positions_y.data(), nbodies, MPI_DOUBLE,
dst, 1, src, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Sendrecv_replace(bodies.others_positions_z.data(), nbodies, MPI_DOUBLE,
dst, 1, src, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Sendrecv_replace(bodies.others_masses.data(), nbodies, MPI_DOUBLE,
dst, 1, src, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
#pragma omp master
{
t1 = MPI_Wtime();
timing.mpi_time += t1 - t0;
}
#pragma omp barrier // Make sure communication is finished
} // end blocks
// kick
#pragma omp master
t0 = MPI_Wtime();
#pragma omp for schedule(static)
for (size_t i=0; i < nbodies; i++) {
bodies.velocities_x[i] += 0.5*dt * bodies.accelerations_x[i];
bodies.velocities_y[i] += 0.5*dt * bodies.accelerations_y[i];
bodies.velocities_z[i] += 0.5*dt * bodies.accelerations_z[i];
}
#pragma omp master
{
t1 = MPI_Wtime();
timing.compute_time += t1 - t0;
}
} // end iters
return timing;
}
int main(int argc, char** argv)
{
if (argc != 3) {
printf("Usage: nbody [number of bodies] [number of iterations]\n");
exit(-1);
}
size_t nbodies = std::atoi(argv[1]);
int niters = std::atoi(argv[2]);
int provided;
MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided);
if (provided < MPI_THREAD_FUNNELED) {
printf("MPI_THREAD_FUNNELED thread support level required\n");
MPI_Abort(MPI_COMM_WORLD, -1);
}
int rank, ntasks, nthreads;
MPI_Comm_size(MPI_COMM_WORLD, &ntasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
size_t my_nbodies = nbodies / ntasks;
if (my_nbodies * ntasks != nbodies) {
printf("Cannot divide bodies evenly!!! bodies=%ld MPI tasks=%d\n", nbodies, ntasks);
MPI_Abort(MPI_COMM_WORLD, -1);
}
nthreads = 1;
#ifdef _OPENMP
#pragma omp parallel
#pragma omp single
nthreads = omp_get_max_threads();
#endif
if (0 == rank) {
std::cout << "Simple N-body simulation: " << nbodies << " bodies; " << niters
<< " steps" << std::endl;
std::cout << "MPI tasks: " << ntasks << " OpenMP threads: " << nthreads << std::endl;
}
auto bodies = Bodies<double> (my_nbodies);
initialize(bodies);
// warm-up
simulate(bodies, 5);
auto e = energy(bodies);
if (0 == rank)
std::cout << "Energy in the beginning: " << e << std::endl;
MPI_Barrier(MPI_COMM_WORLD);
auto t0 = MPI_Wtime();
auto timing = simulate(bodies, niters);
auto t1 = MPI_Wtime();
auto t_total = t1 - t0;
e = energy(bodies);
if (0 == rank)
std::cout << "Energy in the end: " << e << std::endl;
// Calculate average, max and min times
double t_ave, t_max, t_min, t_mpi_ave, t_mpi_max, t_mpi_min, t_comp_ave, t_comp_max, t_comp_min;
MPI_Reduce(&t_total, &t_ave, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
t_ave /= ntasks;
MPI_Reduce(&t_total, &t_max, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
MPI_Reduce(&t_total, &t_min, 1, MPI_DOUBLE, MPI_MIN, 0, MPI_COMM_WORLD);
MPI_Reduce(&timing.mpi_time, &t_mpi_ave, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
t_mpi_ave /= ntasks;
MPI_Reduce(&timing.mpi_time, &t_mpi_max, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
MPI_Reduce(&timing.mpi_time, &t_mpi_min, 1, MPI_DOUBLE, MPI_MIN, 0, MPI_COMM_WORLD);
MPI_Reduce(&timing.compute_time, &t_comp_ave, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
t_comp_ave /= ntasks;
MPI_Reduce(&timing.compute_time, &t_comp_max, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
MPI_Reduce(&timing.compute_time, &t_comp_min, 1, MPI_DOUBLE, MPI_MIN, 0, MPI_COMM_WORLD);
// print reference and timing
auto v_ave = average_velocity(bodies) / nbodies;
if (0 == rank) {
std::cout << "Average velocity: " << v_ave << std::endl;
std::cout << "Timing information mean max min (s): " << std::endl;
std::cout << " Total time: " << t_ave << " " << t_max << " " << t_min << std::endl;
std::cout << " MPI time: " << t_mpi_ave << " " << t_mpi_max << " " << t_mpi_min << std::endl;
std::cout << " Compute time: " << t_comp_ave << " " << t_comp_max << " " << t_comp_min << std::endl;
}
MPI_Finalize();
}