-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconnectedcomponents.cc
397 lines (371 loc) · 15.4 KB
/
connectedcomponents.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
// 2011 Jason Newton <[email protected]>
//M*/
//
#include "connectedcomponents.h"
#include <vector>
namespace cv{
namespace connectedcomponents{
struct NoOp{
NoOp(){
}
void init(int /*labels*/){
}
inline
void operator()(int r, int c, int l){
(void) r;
(void) c;
(void) l;
}
void finish(){}
};
struct Point2ui64{
uint64 x, y;
Point2ui64(uint64 _x, uint64 _y):x(_x), y(_y){}
};
struct CCStatsOp{
const _OutputArray* _mstatsv;
cv::Mat statsv;
const _OutputArray* _mcentroidsv;
cv::Mat centroidsv;
std::vector<Point2ui64> integrals;
CCStatsOp(OutputArray _statsv, OutputArray _centroidsv): _mstatsv(&_statsv), _mcentroidsv(&_centroidsv){
}
inline
void init(int nlabels){
_mstatsv->create(cv::Size(CC_STAT_MAX, nlabels), cv::DataType<int>::type);
statsv = _mstatsv->getMat();
_mcentroidsv->create(cv::Size(2, nlabels), cv::DataType<double>::type);
centroidsv = _mcentroidsv->getMat();
for(int l = 0; l < (int) nlabels; ++l){
int *row = (int *) &statsv.at<int>(l, 0);
row[CC_STAT_LEFT] = INT_MAX;
row[CC_STAT_TOP] = INT_MAX;
row[CC_STAT_WIDTH] = INT_MIN;
row[CC_STAT_HEIGHT] = INT_MIN;
row[CC_STAT_AREA] = 0;
}
integrals.resize(nlabels, Point2ui64(0, 0));
}
void operator()(int r, int c, int l){
int *row = &statsv.at<int>(l, 0);
row[CC_STAT_LEFT] = MIN(row[CC_STAT_LEFT], c);
row[CC_STAT_WIDTH] = MAX(row[CC_STAT_WIDTH], c);
row[CC_STAT_TOP] = MIN(row[CC_STAT_TOP], r);
row[CC_STAT_HEIGHT] = MAX(row[CC_STAT_HEIGHT], r);
row[CC_STAT_AREA]++;
Point2ui64 &integral = integrals[l];
integral.x += c;
integral.y += r;
}
void finish(){
for(int l = 0; l < statsv.rows; ++l){
int *row = &statsv.at<int>(l, 0);
row[CC_STAT_WIDTH] = row[CC_STAT_WIDTH] - row[CC_STAT_LEFT] + 1;
row[CC_STAT_HEIGHT] = row[CC_STAT_HEIGHT] - row[CC_STAT_TOP] + 1;
Point2ui64 &integral = integrals[l];
double *centroid = ¢roidsv.at<double>(l, 0);
double area = ((unsigned*)row)[CC_STAT_AREA];
centroid[0] = double(integral.x) / area;
centroid[1] = double(integral.y) / area;
}
}
};
//Find the root of the tree of node i
template<typename LabelT>
inline static
LabelT findRoot(const LabelT *P, LabelT i){
LabelT root = i;
while(P[root] < root){
root = P[root];
}
return root;
}
//Make all nodes in the path of node i point to root
template<typename LabelT>
inline static
void setRoot(LabelT *P, LabelT i, LabelT root){
while(P[i] < i){
LabelT j = P[i];
P[i] = root;
i = j;
}
P[i] = root;
}
//Find the root of the tree of the node i and compress the path in the process
template<typename LabelT>
inline static
LabelT find(LabelT *P, LabelT i){
LabelT root = findRoot(P, i);
setRoot(P, i, root);
return root;
}
//unite the two trees containing nodes i and j and return the new root
template<typename LabelT>
inline static
LabelT set_union(LabelT *P, LabelT i, LabelT j){
LabelT root = findRoot(P, i);
if(i != j){
LabelT rootj = findRoot(P, j);
if(root > rootj){
root = rootj;
}
setRoot(P, j, root);
}
setRoot(P, i, root);
return root;
}
//Flatten the Union Find tree and relabel the components
template<typename LabelT>
inline static
LabelT flattenL(LabelT *P, LabelT length){
LabelT k = 1;
for(LabelT i = 1; i < length; ++i){
if(P[i] < i){
P[i] = P[P[i]];
}else{
P[i] = k; k = k + 1;
}
}
return k;
}
//Based on "Two Strategies to Speed up Connected Components Algorithms", the SAUF (Scan array union find) variant
//using decision trees
//Kesheng Wu, et al
//Note: rows are encoded as position in the "rows" array to save lookup times
//reference for 4-way: {{-1, 0}, {0, -1}};//b, d neighborhoods
const int G4[2][2] = {{1, 0}, {0, -1}};//b, d neighborhoods
//reference for 8-way: {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}};//a, b, c, d neighborhoods
const int G8[4][2] = {{1, -1}, {1, 0}, {1, 1}, {0, -1}};//a, b, c, d neighborhoods
template<typename LabelT, typename PixelT, typename StatsOp = NoOp >
struct LabelingImpl{
LabelT operator()(const cv::Mat &I, cv::Mat &L, int connectivity, StatsOp &sop){
CV_Assert(L.rows == I.rows);
CV_Assert(L.cols == I.cols);
CV_Assert(connectivity == 8 || connectivity == 4);
const int rows = L.rows;
const int cols = L.cols;
//A quick and dirty upper bound for the maximimum number of labels. The 4 comes from
//the fact that a 3x3 block can never have more than 4 unique labels for both 4 & 8-way
const size_t Plength = 4 * (size_t(rows + 3 - 1)/3) * (size_t(cols + 3 - 1)/3);
LabelT *P = (LabelT *) fastMalloc(sizeof(LabelT) * Plength);
P[0] = 0;
LabelT lunique = 1;
//scanning phase
for(int r_i = 0; r_i < rows; ++r_i){
LabelT * const Lrow = L.ptr<LabelT>(r_i);
LabelT * const Lrow_prev = (LabelT *)(((char *)Lrow) - L.step.p[0]);
const PixelT * const Irow = I.ptr<PixelT>(r_i);
const PixelT * const Irow_prev = (const PixelT *)(((char *)Irow) - I.step.p[0]);
LabelT *Lrows[2] = {
Lrow,
Lrow_prev
};
const PixelT *Irows[2] = {
Irow,
Irow_prev
};
if(connectivity == 8){
const int a = 0;
const int b = 1;
const int c = 2;
const int d = 3;
const bool T_a_r = (r_i - G8[a][0]) >= 0;
const bool T_b_r = (r_i - G8[b][0]) >= 0;
const bool T_c_r = (r_i - G8[c][0]) >= 0;
for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){
if(!*Irows[0]){
Lrow[c_i] = 0;
continue;
}
Irows[1] = Irow_prev + c_i;
Lrows[0] = Lrow + c_i;
Lrows[1] = Lrow_prev + c_i;
const bool T_a = T_a_r && (c_i + G8[a][1]) >= 0 && *(Irows[G8[a][0]] + G8[a][1]);
const bool T_b = T_b_r && *(Irows[G8[b][0]] + G8[b][1]);
const bool T_c = T_c_r && (c_i + G8[c][1]) < cols && *(Irows[G8[c][0]] + G8[c][1]);
const bool T_d = (c_i + G8[d][1]) >= 0 && *(Irows[G8[d][0]] + G8[d][1]);
//decision tree
if(T_b){
//copy(b)
*Lrows[0] = *(Lrows[G8[b][0]] + G8[b][1]);
}else{//not b
if(T_c){
if(T_a){
//copy(c, a)
*Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[a][0]] + G8[a][1]));
}else{
if(T_d){
//copy(c, d)
*Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[d][0]] + G8[d][1]));
}else{
//copy(c)
*Lrows[0] = *(Lrows[G8[c][0]] + G8[c][1]);
}
}
}else{//not c
if(T_a){
//copy(a)
*Lrows[0] = *(Lrows[G8[a][0]] + G8[a][1]);
}else{
if(T_d){
//copy(d)
*Lrows[0] = *(Lrows[G8[d][0]] + G8[d][1]);
}else{
//new label
*Lrows[0] = lunique;
P[lunique] = lunique;
lunique = lunique + 1;
}
}
}
}
}
}else{
//B & D only
const int b = 0;
const int d = 1;
const bool T_b_r = (r_i - G4[b][0]) >= 0;
for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){
if(!*Irows[0]){
Lrow[c_i] = 0;
continue;
}
Irows[1] = Irow_prev + c_i;
Lrows[0] = Lrow + c_i;
Lrows[1] = Lrow_prev + c_i;
const bool T_b = T_b_r && *(Irows[G4[b][0]] + G4[b][1]);
const bool T_d = (c_i + G4[d][1]) >= 0 && *(Irows[G4[d][0]] + G4[d][1]);
if(T_b){
if(T_d){
//copy(d, b)
*Lrows[0] = set_union(P, *(Lrows[G4[d][0]] + G4[d][1]), *(Lrows[G4[b][0]] + G4[b][1]));
}else{
//copy(b)
*Lrows[0] = *(Lrows[G4[b][0]] + G4[b][1]);
}
}else{
if(T_d){
//copy(d)
*Lrows[0] = *(Lrows[G4[d][0]] + G4[d][1]);
}else{
//new label
*Lrows[0] = lunique;
P[lunique] = lunique;
lunique = lunique + 1;
}
}
}
}
}
//analysis
LabelT nLabels = flattenL(P, lunique);
sop.init(nLabels);
for(int r_i = 0; r_i < rows; ++r_i){
LabelT *Lrow_start = L.ptr<LabelT>(r_i);
LabelT *Lrow_end = Lrow_start + cols;
LabelT *Lrow = Lrow_start;
for(int c_i = 0; Lrow != Lrow_end; ++Lrow, ++c_i){
const LabelT l = P[*Lrow];
*Lrow = l;
sop(r_i, c_i, l);
}
}
sop.finish();
fastFree(P);
return nLabels;
}//End function LabelingImpl operator()
};//End struct LabelingImpl
}//end namespace connectedcomponents
//L's type must have an appropriate depth for the number of pixels in I
template<typename StatsOp>
static
int connectedComponents_sub1(const cv::Mat &I, cv::Mat &L, int connectivity, StatsOp &sop){
CV_Assert(L.channels() == 1 && I.channels() == 1);
CV_Assert(connectivity == 8 || connectivity == 4);
int lDepth = L.depth();
int iDepth = I.depth();
using connectedcomponents::LabelingImpl;
//warn if L's depth is not sufficient?
CV_Assert(iDepth == CV_8U || iDepth == CV_8S);
if(lDepth == CV_8U){
return (int) LabelingImpl<uchar, uchar, StatsOp>()(I, L, connectivity, sop);
}else if(lDepth == CV_16U){
return (int) LabelingImpl<ushort, uchar, StatsOp>()(I, L, connectivity, sop);
}else if(lDepth == CV_32S){
//note that signed types don't really make sense here and not being able to use unsigned matters for scientific projects
//OpenCV: how should we proceed? .at<T> typechecks in debug mode
return (int) LabelingImpl<int, uchar, StatsOp>()(I, L, connectivity, sop);
}
CV_Error(CV_StsUnsupportedFormat, "unsupported label/image type");
return -1;
}
}
int cv::connectedComponents(InputArray _img, OutputArray _labels, int connectivity, int ltype){
const cv::Mat img = _img.getMat();
_labels.create(img.size(), CV_MAT_DEPTH(ltype));
cv::Mat labels = _labels.getMat();
connectedcomponents::NoOp sop;
if(ltype == CV_16U){
return connectedComponents_sub1(img, labels, connectivity, sop);
}else if(ltype == CV_32S){
return connectedComponents_sub1(img, labels, connectivity, sop);
}else{
CV_Error(CV_StsUnsupportedFormat, "the type of labels must be 16u or 32s");
return 0;
}
}
int cv::connectedComponentsWithStats(InputArray _img, OutputArray _labels, OutputArray statsv,
OutputArray centroids, int connectivity, int ltype)
{
const cv::Mat img = _img.getMat();
_labels.create(img.size(), CV_MAT_DEPTH(ltype));
cv::Mat labels = _labels.getMat();
connectedcomponents::CCStatsOp sop(statsv, centroids);
if(ltype == CV_16U){
return connectedComponents_sub1(img, labels, connectivity, sop);
}else if(ltype == CV_32S){
return connectedComponents_sub1(img, labels, connectivity, sop);
}else{
CV_Error(CV_StsUnsupportedFormat, "the type of labels must be 16u or 32s");
return 0;
}
}