-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathMCWNNM_ADMM2_Denoising.m
47 lines (42 loc) · 2.11 KB
/
MCWNNM_ADMM2_Denoising.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
function [E_Img, Par] = MCWNNM_ADMM2_Denoising( N_Img, O_Img, Par )
E_Img = N_Img; % Estimated Image
[h, w, ch] = size(E_Img);
Par.h = h;
Par.w = w;
Par.ch = ch;
Par = SearchNeighborIndex( Par );
% noisy image to patch
NoiPat = Image2Patch( N_Img, Par );
Par.TolN = size(NoiPat, 2);
Sigma_arrCh = zeros(Par.ch, Par.TolN);
for iter = 1 : Par.Iter
Par.iter = iter;
% iterative regularization
E_Img = E_Img + Par.delta * (N_Img - E_Img);
% image to patch
CurPat = Image2Patch( E_Img, Par );
% estimate local noise variance
for c = 1:Par.ch
if (iter == 1) && (Par.Iter > 1)
TempSigma_arrCh = sqrt(max(0, repmat(Par.nSig0(c)^2, 1, size(CurPat, 2)) - mean((NoiPat((c-1)*Par.ps2+1:c*Par.ps2, :) - CurPat((c-1)*Par.ps2+1:c*Par.ps2, :)).^2)));
% TempSigma_arrCh = sqrt(abs(repmat(Par.nSig0(c)^2, 1, size(CurPat, 2)) - mean((NoiPat((c-1)*Par.ps2+1:c*Par.ps2, :) - CurPat((c-1)*Par.ps2+1:c*Par.ps2, :)).^2)));
else
TempSigma_arrCh = Par.lambda*sqrt(max(0, repmat(Par.nSig0(c)^2, 1, size(CurPat, 2)) - mean((NoiPat((c-1)*Par.ps2+1:c*Par.ps2, :) - CurPat((c-1)*Par.ps2+1:c*Par.ps2, :)).^2)));
% TempSigma_arrCh = Par.lambda*sqrt(abs(repmat(Par.nSig0(c)^2, 1, size(CurPat, 2)) - mean((NoiPat((c-1)*Par.ps2+1:c*Par.ps2, :) - CurPat((c-1)*Par.ps2+1:c*Par.ps2, :)).^2)));
end
Sigma_arrCh((c-1)*Par.ps2+1:c*Par.ps2, :) = repmat(TempSigma_arrCh, [Par.ps2, 1]);
end
if (mod(iter-1, Par.Innerloop) == 0)
Par.nlsp = Par.nlsp - 10; % Lower Noise level, less NL patches
NL_mat = Block_Matching(CurPat, Par);% Caculate Non-local similar patches for each
end
% Denoising by MCWNNM
[Y_hat, W_hat] = MCWNNM_ADMM2_Estimation( NL_mat, Sigma_arrCh, CurPat, Par ); % Estimate all the patches
E_Img = PGs2Image(Y_hat, W_hat, Par);
PSNR = csnr( O_Img, E_Img, 0, 0 );
SSIM = cal_ssim( O_Img, E_Img, 0, 0 );
fprintf( 'Iter = %2.3f, PSNR = %2.2f, SSIM = %2.2f \n', iter, PSNR, SSIM );
Par.PSNR(iter, Par.image) = PSNR;
Par.SSIM(iter, Par.image) = SSIM;
end
return;