-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathMCWNNM_ADMM_NL1.m
70 lines (65 loc) · 2.24 KB
/
MCWNNM_ADMM_NL1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
function [Z, sigma] = MCWNNM_ADMM_NL1( Y, NSig, Par )
% This routine solves the following weighted nuclear norm optimization problem with column weights,
%
% min_{X, Z} ||W(Y-X)||_F^2 + ||Z||_w,* s.t. X = Z
%
% Inputs:
% Y -- 3p^2 x M dimensional noisy matrix, D is the data dimension, and N is the number of image patches.
% NSig -- 3p^2 x 1 dimensional vector of weights
% Par -- structure of parameters
% Output:
% Z -- 3p^2 x M dimensional denoised matrix
% sigma -- the noise standard deviation
% tol = 1e-8;
if ~isfield(Par, 'maxIter')
Par.maxIter = 10;
end
if ~isfield(Par, 'rho')
Par.rho = 1;
end
if ~isfield(Par, 'mu')
Par.mu = 1;
end
if ~isfield(Par, 'display')
Par.display = true;
end
%% Initializing optimization variables
% intialize
% Initializing optimization variables
% Intialize the weight matrix W
mNSig = min(NSig);
W = (mNSig+eps) ./ (NSig+eps);
Z = zeros(size(Y));
A = zeros(size(Y));
%% Start main loop
iter = 0;
PatNum = size(Y,2);
TempC = Par.Constant * sqrt(PatNum) * mNSig^2;
% TempC = Par.Constant * sqrt(PatNum);
while iter < Par.maxIter
iter = iter + 1;
% update X, fix Z and A
% min_{X} ||W * Y - W * X||_F^2 + 0.5 * rho * ||X - Z + 1/rho * A||_F^2
X = diag(1 ./ (W.^2 + 0.5 * Par.rho)) * (diag(W.^2) * Y + 0.5 * Par.rho * Z - 0.5 * A);
% update Z, fix X and A
% min_{Z} ||Z||_*,w + 0.5 * rho * ||Z - (X + 1/rho * A)||_F^2
Temp = X + A/Par.rho;
[U, SigmaTemp, V] = svd(full(Temp), 'econ');
[SigmaZ, svp] = ClosedWNNM(diag(SigmaTemp), 2/Par.rho*TempC, eps);
Z = U(:, 1:svp) * diag(SigmaZ) * V(:, 1:svp)';
% % check the convergence conditions
% stopC = max(max(abs(X - Z)));
% if Par.display && (iter==1 || mod(iter,10)==0 || stopC<tol)
% disp(['iter ' num2str(iter) ',mu=' num2str(Par.mu,'%2.1e') ...
% ',rank=' num2str(rank(Z,1e-4*norm(Z,2))) ',stopALM=' num2str(stopC,'%2.3e')]);
% end
% if stopC < tol
% break;
% else
% update the multiplier A, fix Z and X
A = A + Par.rho * (X - Z);
Par.rho = min(1e4, Par.mu * Par.rho);
% end
end
sigma = sqrt( mean( reshape(mean((Y - Z).^2, 2)', [Par.ps2 Par.ch])) )';
return;