-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdfa.cc
270 lines (231 loc) · 7.35 KB
/
dfa.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
//
// Created by xvvx on 18-4-4.
//
#include "dfa.h"
#include <algorithm>
#include <queue>
#include <set>
#include <map>
/*-----------------------------------------------------------------------------------------------*/
/**
* namespace dfa_constructor
*/
/**
* @brief Use subset construction to convert a nfa to dfa
* @param nfa
* @return
*/
DfaNode *dfa_constructor::ConvertNfaToDfa(Nfa *nfa) {
assert(nfa != nullptr);
std::map<vector<NfaNode*>, DfaNode*> set_dfa_node_map;
DfaNode *begin_node = new DfaNode(true, false);
auto all_nodes = CollectNodes(nfa);
auto begin_set = EpsilonClosure(nfa -> begin());
std::sort(begin_set.begin(), begin_set.end());
set_dfa_node_map.insert({begin_set, begin_node});
std::queue<vector<NfaNode*>> work_list;
work_list.push(begin_set);
while (!work_list.empty()) {
auto curr_set = work_list.front();
auto *curr_dfa_node = set_dfa_node_map[curr_set];
auto chars = CollectEdgesCharMasks(curr_set);
for (char c = 0; c < CHAR_MAX; ++c) {
if (chars.test(c)) {
auto next_nodes = EpsilonClosure(MoveFromNode(curr_set, c));
std::sort(next_nodes.begin(), next_nodes.end());
auto iter = set_dfa_node_map.find(next_nodes);
if (iter == set_dfa_node_map.end()) {
iter = set_dfa_node_map.insert(
{next_nodes, new DfaNode(false, false)}).first;
work_list.push(next_nodes);
}
DfaNode *new_dfa_node = iter -> second;
if (ExistEndNode(next_nodes)) {
new_dfa_node -> set_end(true);
}
curr_dfa_node -> add_edge(c, new_dfa_node);
}
}
work_list.pop();
}
return begin_node;
}
/**
* @brief Use Hopcroft Algorithm to minimize a dfa
* @param dfa
* @return
*/
Dfa *dfa_constructor::MinimizeDfa(Dfa *dfa) {
assert (dfa != nullptr);
auto all_nodes = CollectNodes(dfa);
set<DfaNode*> terminal_nodes;
set<DfaNode*> nonterminal_nodes;
for (auto each_node : all_nodes) {
if (each_node -> is_end()) {
terminal_nodes.insert(each_node);
}
else {
nonterminal_nodes.insert(each_node);
}
}
set<set<DfaNode*>> set_t{ terminal_nodes, nonterminal_nodes };
set<set<DfaNode*>> set_p;
while (set_p != set_t) {
set_p = set_t;
set_t = set<set<DfaNode*>>();
// T = T union Split(p)
for (auto each_set : set_p) {
auto each_set_split = Split(set_p, each_set);
for (const auto &each : each_set_split) {
set_t.insert(each);
}
}
}
auto dfa_begin = ConstructDfaFromSet(set_p);
auto minimal_dfa = new Dfa(dfa_begin);
return minimal_dfa;
}
set<set<DfaNode*>>
dfa_constructor::Split(const set<set<DfaNode*>> &node_set, set<DfaNode*> &nodes) {
set<set<DfaNode*>> result;
std::map<char, set<DfaNode*>> char_set_map;
for (char c = 0; c != CHAR_MAX; ++c) {
result = Split(c, node_set, nodes);
if (result.size() > 1) {
return result;
}
}
return result;
}
set<set<DfaNode*>> dfa_constructor::Split(char c, const set<set<DfaNode*>> &node_set,
set<DfaNode*> &nodes) {
auto set_num = node_set.size();
vector<set<DfaNode*>> next_set(set_num, set<DfaNode*>());
int count = 0;
auto iter = nodes.begin();
while (iter != nodes.end()) {
auto node = *iter;
auto edges = node -> edges();
auto next_node = node;
auto edge_iter= edges.find(c);
if (edge_iter != edges.end()) {
next_node = edge_iter -> second;
}
auto node_set_iter= node_set.begin();
for (int i = 0; i != set_num; ++i) {
if (node_set_iter -> find(next_node) != node_set_iter -> end()) {
next_set[i].insert(node);
}
++node_set_iter;
}
++iter;
}
set<set<DfaNode*>> result;
for (const auto &each : next_set) {
if (!each.empty()) {
result.insert(each);
}
}
return result;
}
DfaNode *dfa_constructor::ConstructDfaFromSet(const set<set<DfaNode *>> &node_set) {
//TODO
return nullptr;
}
vector<NfaNode*> dfa_constructor::EpsilonClosure(NfaNode *node) {
vector<NfaNode*> result;
EpsilonClosure_(node, result);
return result;
}
vector<NfaNode*> dfa_constructor::EpsilonClosure(vector<NfaNode*> nodes) {
vector<NfaNode*> result;
for (auto each_node : nodes) {
EpsilonClosure_(each_node, result);
}
return result;
}
vector<NfaNode*> dfa_constructor::MoveFromNode(NfaNode *node, char a) {
vector<NfaNode*> result;
for (auto each_edge : node -> edges()) {
if (each_edge -> is_in(a)) {
auto beg = result.begin();
auto end = result.end();
if (find(beg, end, each_edge -> next_node()) == end) {
result.push_back(each_edge -> next_node());
}
}
}
return result;
}
vector<NfaNode*> dfa_constructor::MoveFromNode(vector<NfaNode*> nodes, char a) {
vector<NfaNode*> result;
for (auto node : nodes) {
for (auto each_edge : node -> edges()) {
if (each_edge -> is_in(a)) {
auto beg = result.begin();
auto end = result.end();
if (find(beg, end, each_edge -> next_node()) == end) {
result.push_back(each_edge -> next_node());
}
}
}
}
return result;
}
void dfa_constructor::EpsilonClosure_(NfaNode *node, vector<NfaNode*> &result) {
if (node == nullptr || find(result.begin(), result.end(), node) != result.end()) {
return ;
}
result.push_back(node);
for (auto each_edge : node -> edges()) {
if (each_edge -> is_epsilon()) {
EpsilonClosure_(each_edge -> next_node(), result);
}
}
}
NfaEdge::CharMasks dfa_constructor::CollectEdgesCharMasks(const vector<NfaNode*> &nodes) {
NfaEdge::CharMasks char_masks;
for (auto each : nodes) {
for (auto each_edge : each -> edges()) {
auto this_char_masks = each_edge -> char_masks();
char_masks |= this_char_masks;
}
}
return char_masks;
}
bool dfa_constructor::ExistEndNode(const vector<NfaNode*> &nodes) {
bool result = false;
for (auto each : nodes) {
result |= each -> is_end();
}
return result;
}
/*-----------------------------------------------------------------------------------------------*/
/**
* tool functions
*/
vector<DfaNode*> CollectNodes(Dfa *dfa) {
vector<DfaNode*> nodes;
if (dfa == nullptr) {
return nodes;
}
auto begin = dfa -> begin();
CollectNodes(begin, nodes);
return nodes;
}
void CollectNodes(DfaNode *node, vector<DfaNode*> &nodes) {
if (node == nullptr) {
return;
}
nodes.push_back(node);
auto edges = node -> edges();
auto iter = edges.begin();
while (iter != edges.end()) {
auto node = iter -> second;
if (find(nodes.begin(), nodes.end(), node) == nodes.end()) {
CollectNodes(iter->second, nodes);
}
++iter;
}
}
/*-----------------------------------------------------------------------------------------------*/