-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_random.py
353 lines (313 loc) · 14.8 KB
/
main_random.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
from fileinput import filename
import sys
sys.path.append("./subjects/")
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
if sys.version_info.major==2:
from Queue import PriorityQueue
else:
from queue import PriorityQueue
import os
import time
import copy
from scipy.stats import randint
import csv
import argparse
from sklearn.metrics import r2_score, accuracy_score, precision_score, recall_score
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from fairlearn.metrics import MetricFrame, selection_rate, false_positive_rate, true_positive_rate
from fairlearn.metrics import demographic_parity_difference, demographic_parity_ratio, equalized_odds_difference
from adf_utils.config import census, credit, bank, compas
from adf_data.census import census_data
from adf_data.credit import credit_data
from adf_data.bank import bank_data
from adf_data.compas import compas_data
import xml_parser
import xml_parser_domains
from Timeout import timeout
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", help='The name of dataset: census, credit, bank ')
parser.add_argument("--algorithm", help='The name of algorithm: logistic regression, SVM, Random Forest')
parser.add_argument("--output", help='The name of output file', required=False)
parser.add_argument("--sensitive_index", help='The index for sensitive feature')
parser.add_argument("--time_out", help='Max. running time', default = 14400, required=False)
parser.add_argument("--max_iter", help='The maximum number of iterations', default = 100000, required=False)
parser.add_argument("--save_model", help='Enable save models', default = "False", required=False)
parser.add_argument("--standard_scale", help='Preprocess data with standard scaling on features before using model', default = "False", required=False)
parser.add_argument("--unaware", help='Mask the sensitive attribute (essentially running "fairness through unawareness"', default = "False", required=False)
args = parser.parse_args()
def check_for_fairness(X, y_pred, y_true, a, X_new = None, Y_new = None):
parities = []
impacts = []
eq_odds = []
metric_frames = []
metrics = {
'false positive rate': false_positive_rate,
'true positive rate': true_positive_rate
}
metric_frame = MetricFrame(metrics, y_true, y_pred, sensitive_features=a)
return metric_frame.by_group["true positive rate"], metric_frame.by_group["false positive rate"]
@timeout(int(args.time_out))
def test_cases(dataset, program_name, max_iter, X_train, X_test, y_train, y_test, sensitive_param, group_0, group_1, sensitive_name, start_time):
num_args = 0
if(program_name == "LogisticRegression"):
import LogisticRegression
input_program = LogisticRegression.logistic_regression
input_program_tree = 'logistic_regression_Params.xml'
num_args = 15
elif(program_name == "Decision_Tree_Classifier"):
import Decision_Tree_Classifier
input_program = Decision_Tree_Classifier.DecisionTree
input_program_tree = 'Decision_Tree_Classifier_Params.xml'
num_args = 13
elif(program_name == "TreeRegressor"):
import TreeRegressor
input_program = TreeRegressor.TreeRegress
input_program_tree = 'TreeRegressor_Params.xml'
num_args = 18
elif(program_name == "Discriminant_Analysis"):
import Discriminant_Analysis
input_program = Discriminant_Analysis.disc_analysis
input_program_tree = 'Discriminant_Analysis_Params.xml'
num_args = 9
elif(program_name == "SVM"):
import SVM
input_program = SVM.SVM
input_program_tree = 'SVM_Params.xml'
num_args = 12
elif(program_name == "LogisticRegressionMitigation"):
import LogisticRegressionMitigation
input_program = LogisticRegressionMitigation.logistic_regression_mitigation
input_program_tree = 'logistic_regression_mitigation_Params.xml'
num_args = 14
elif(program_name == "Decision_Tree_Classifier_Mitigation"):
import Decision_Tree_Classifier_Mitigation
input_program = Decision_Tree_Classifier_Mitigation.DecisionTreeMitigation
input_program_tree = 'Decision_Tree_Classifier_Mitigation_Params.xml'
num_args = 17
elif(program_name == "TreeRegressorMitigation"):
import TreeRegressorMitigation
input_program = TreeRegressorMitigation.TreeRegressMitigation
input_program_tree = 'TreeRegressorMitigation_Params.xml'
num_args = 18
elif(program_name == "Discriminant_Analysis_Mitigation"):
import Discriminant_Analysis_Mitigation
input_program = Discriminant_Analysis_Mitigation.disc_analysis_mitigation
input_program_tree = 'Discriminant_Analysis_Mitigation_Params.xml'
num_args = 13
elif(program_name == "SVM_Mitigation"):
import SVM_Mitigation
input_program = SVM_Mitigation.SVM_Mitigation
input_program_tree = 'SVM_Mitigation_Params.xml'
num_args = 13
arr_min, arr_max, arr_type, arr_default = xml_parser_domains.xml_parser_domains(input_program_tree, num_args)
promising_inputs_fair1 = []
promising_inputs_fair2 = []
promising_metric_fair1 = []
promising_metric_fair2 = []
high_diff_1 = 0.0
high_diff_2 = 0.0
low_diff_1 = 1.0
low_diff_2 = 1.0
default_acc = 0.0
failed = 0
highest_acc = 0.0
highest_acc_inp = None
AOD_diff = 0.0
if args.output == None:
filename = "./Dataset/" + program_name + "_" + dataset + "_" + sensitive_name + "_random_" + str(int(start_time)) + "_res.csv"
elif args.output == "":
filename = "./Dataset/" + program_name + "_" + dataset + "_" + sensitive_name + "_random_" + str(int(start_time)) + "_res.csv"
elif ".csv" in args.output:
filename = "./Dataset/" + args.output
else:
filename = "./Dataset/" + args.output + ".csv"
with open(filename, 'w') as f:
for counter in range(max_iter):
inp = []
execution_time = 0.0
# include default value
if counter == 0:
for i in range(len(arr_min)):
if(arr_type[i] == 'bool'):
inp.append(int(arr_default[i]))
elif(arr_type[i] == 'int'):
inp.append(int(arr_default[i]))
elif(arr_type[i] == 'float'):
inp.append(float(arr_default[i]))
else:
for i in range(len(arr_min)):
if(arr_type[i] == 'bool'):
inp.append(randint.rvs(0,2))
elif(arr_type[i] == 'int'):
minVal = int(arr_min[i])
maxVal = int(arr_max[i])
inp.append(np.random.randint(minVal,maxVal+1))
elif(arr_type[i] == 'float'):
minVal = float(arr_min[i])
maxVal = float(arr_max[i])
inp.append(np.random.uniform(minVal,maxVal+0.00001))
print(inp)
mask = [False]*len(X_train[0])
if (args.unaware.lower()=="true"):
mask[sensitive_param-1] = True
X_train_masked = np.delete(X_train, mask, axis = 1)
X_test_masked = np.delete(X_test, mask, axis = 1)
save_model = (args.save_model.lower()=="true")
if (args.standard_scale.lower()=="true"):
from sklearn.preprocessing import StandardScaler
# To avoid "data leaking"/contaminating the testing data, we transform/fit the X_test data using the X_train data.
ss = StandardScaler()
ss.fit(X_train_masked)
start_time_ms = int(round(time.time() * 1000))
res, LR, inp_valid, score, preds, features = input_program(inp, ss.transform(X_train_masked), ss.transform(X_test_masked), y_train, y_test, sensitive_param, dataset_name=dataset, save_model=save_model)
end_time_ms = int(round(time.time() * 1000))
else:
start_time_ms = int(round(time.time() * 1000))
res, LR, inp_valid, score, preds, features = input_program(inp, X_train_masked, X_test_masked, y_train, y_test, sensitive_param, dataset_name=dataset, save_model=save_model)
end_time_ms = int(round(time.time() * 1000))
execution_time = end_time_ms - start_time_ms
if not res:
failed += 1
continue
if counter == 0:
features.append("score")
features.append("AOD")
features.append("Training Size")
features.append("Max Iteration")
features.append("counter")
features.append("execution time")
for i in range(len(features)):
if i < len(features) - 1:
if features[i] == None:
f.write(",")
else:
f.write("%s," % features[i])
else:
f.write("%s" % features[i])
f.write("\n")
default_acc = score
# if (score < (default_acc - 0.01)):
# continue
if(score > highest_acc):
highest_acc = score
highest_acc_inp = inp_valid
fair_metric_1, fair_metric_2 = check_for_fairness(X_test, preds, y_test, X_test[:,sensitive_param-1])
diff_1 = np.abs(fair_metric_1[group_0] - fair_metric_1[group_1])
diff_2 = np.abs(fair_metric_2[group_0] - fair_metric_2[group_1])
AOD = (diff_1 + diff_2) * 0.5
full_inp = inp_valid.copy()
full_inp.append(score)
full_inp.append(AOD)
full_inp.append(X_train.shape[0])
full_inp.append(max_iter)
full_inp.append(counter)
# execution time!
full_inp.append(execution_time)
for i in range(len(full_inp)):
if i < len(full_inp) - 1:
if full_inp[i] == None:
f.write(",")
else:
f.write("%s," % full_inp[i])
else:
f.write("%s" % full_inp[i])
f.write("\n")
# if AOD_diff < AOD:
# AOD_diff = AOD
# if high_diff_1 < diff_1:
# promising_inputs_fair1.append(inp_valid)
# promising_metric_fair1.append([diff_1, score])
# high_diff_1 = diff_1
# if high_diff_2 < diff_2:
# promising_inputs_fair2.append(inp_valid)
# promising_metric_fair2.append([diff_2, score])
# high_diff_2 = diff_2
# if low_diff_1 > diff_1:
# low_diff_1 = diff_1
# if low_diff_2 > diff_2:
# low_diff_2 = diff_2
if counter == 0:
promising_inputs_fair1.append(inp_valid)
promising_inputs_fair2.append(inp_valid)
promising_metric_fair1.append([diff_1, score])
promising_metric_fair2.append([diff_2, score])
high_diff_1 = diff_1
high_diff_2 = diff_2
# print("Highest AOD difference is " + str(AOD_diff))
# print("Highest EOD different is " + str(high_diff_1))
print("score is " + str(score))
print("counter: " + str(counter))
print("---------------------------------------------------------")
print("------------------END-----------------------------------")
# print(promising_inputs_fair1[-1])
# print(promising_inputs_fair1[0])
# print(promising_inputs_fair2[-1])
# print(promising_inputs_fair2[0])
# print(promising_metric_fair1[-1])
# print(promising_metric_fair1[0])
# print(promising_metric_fair2[-1])
# print(promising_metric_fair2[0])
# print("Highest AOD differences " + str(AOD_diff))
# print("Lowest fairness (1) differences " + str(low_diff_1))
# print("Lowest fairness (2) differences " + str(low_diff_2))
# print("Failed Test cases: " + str(failed))
# print("Highest accuracy observed: " + str(highest_acc))
# print("Highest accuracy input: " + str(highest_acc_inp))
if __name__ == '__main__':
dataset = args.dataset
# algorithm = LogisticRegression, Decision_Tree_Classifier, TreeRegressor, Discriminant_Analysis
algorithm = args.algorithm
num_iteration = int(args.max_iter)
data = {"census":census_data, "credit":credit_data, "bank":bank_data, "compas": compas_data}
data_config = {"census":census, "credit":credit, "bank":bank, "compas": compas}
# census (9 is for sex: 0 (men) vs 1 (female); 8 is for race: 0 (white) vs 4 (black))
# credit (9 is for sex)
# bank (1 is for age)
# compas (1 is for sex: 0 (male) vs 1 (female); 2 is for age: 0 is under 25, 1 is between 25 and 45, and 2 is greater than 45); 2 is for race: Caucasian is 1 and non-Caucasian is 0.
sensitive_param = int(args.sensitive_index)
sensitive_name = ""
group_0 = 0
group_1 = 1
if dataset == "census" and sensitive_param == 9:
sensitive_name = "gender"
group_0 = 0 #female
group_1 = 1 #male
if dataset == "census" and sensitive_param == 8:
group_0 = 0
group_1 = 4
sensitive_name = "race"
if dataset == "credit" and sensitive_param == 9:
group_0 = 0 # male
group_1 = 1 # female
sensitive_name = "gender"
if dataset == "bank" and sensitive_param == 1: # with 3,5: 0.89; with 2,5: 0.84; with 4,5: 0.05; with 3,4: 0.6
group_0 = 3
group_1 = 5
sensitive_name = "age"
if dataset == "compas" and sensitive_param == 1: # sex
group_0 = 0 # male
group_1 = 1 # female
sensitive_name = "gender"
if dataset == "compas" and sensitive_param == 2: # age
group_0 = 0 # under 25
group_1 = 2 # greater than 45
sensitive_name = "age"
if dataset == "compas" and sensitive_param == 3: # race
group_0 = 0 # non-Caucasian
group_1 = 1 # Caucasian
sensitive_name = "race"
X, Y, input_shape, nb_classes = data[dataset]()
Y = np.argmax(Y, axis=1)
split_rate = [0.8, 0.6, 0.4, 0.2, 0.01]
for rate in split_rate:
start_time = time.time()
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=rate)
try:
test_cases(dataset, algorithm, num_iteration, X_train, X_test, y_train, y_test, sensitive_param, group_0, group_1, sensitive_name, start_time)
except TimeoutError as error:
print("Caght an error!" + str(error))
print("--- %s seconds ---" % (time.time() - start_time))
print("--- %s seconds ---" % (time.time() - start_time))