-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgenerate_robot_data.py
executable file
·308 lines (250 loc) · 12.4 KB
/
generate_robot_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import numpy as np
import os
import itertools
import ray
import time
from tqdm import tqdm
import glob
import mujoco
import shutil
from PIL import Image
from utils.mujoco_utils import compute_camera_extrinsic_matrix, compute_camera_intrinsic_matrix
from filelock import FileLock
from utils.mujoco_utils import get_canonical_pose, set_xml_light_params, find_non_collision_pose, save_robot_metadata
os.environ['MUJOCO_GL'] = 'osmesa'
"""
This file creates many Mujoco environments simultaneously and renders images from them.
It is used to generate the point cloud dataset for the robot dataset.
Instructions for preparing a XML file for processing:
- Remove fixed joints from the model
"""
@ray.remote
class MujocoActor:
"""
Converts a XML file into an image/depth/point cloud dataset for kinematically-aware gaussian training.
"""
def __init__(self,
actor_id,
model_xml_dir,
save_dir,
diffuse_light_params=(0.5, 0.5, 0.5),
ambient_light_params=(0.5, 0.5, 0.5),
resolution=(256, 256),
pcd_max_points=10_000,
):
self.model_xml_dir = model_xml_dir
self.model_xml_path = os.path.join(model_xml_dir, "scene.xml")
self.robot_name = model_xml_dir.split('/')[-1]
#modify xml file to have reasonable lighting params
set_xml_light_params(self.model_xml_path, diffuse_light_params, ambient_light_params)
#initiilize the mujoco environment in a fault-tolerant way
attempt, MAX_ATTEMPTS = 0, 10
success = False
while not success and attempt < MAX_ATTEMPTS:
try:
self.model = mujoco.MjModel.from_xml_path(self.model_xml_path)
self.data = mujoco.MjData(self.model)
self.save_dir = save_dir
self.renderer = mujoco.Renderer(self.model, resolution[0], resolution[1])
success = True
except Exception as e:
attempt += 1
sleep_time = 1.5 ** attempt
print(f"Attempt {attempt} failed with error: {e}. Retrying in {sleep_time} seconds.")
time.sleep(sleep_time)
if not success:
raise Exception("Failed to initialize Mujoco components after multiple attempts.")
self.pcd_max_points = pcd_max_points
save_robot_metadata(self.model, self.model_xml_dir, self.save_dir)
def generate_and_save_pc(self, sample_id, args, is_canonical=False, is_test=False, verbose=False):
import open3d as o3d #importing it here to avoid a bug
joint_limits = self.model.jnt_range
joint_position = find_non_collision_pose(joint_limits,
self.model,
self.data,
is_canonical,
max_n_collisions=10 if is_canonical else 0, #canonical pose shouldn't have collision
robot_name=self.robot_name) #returns a j-vector
#generate list of camera poses that are going to be used for this sample
#since point clouds are also generated here, make sure to include sufficient camera angles
camera_params = self.generate_camera_params()
images, depth_images, intrinsic_matrices, extrinsic_matrices = self.render_images(joint_position,
camera_params,
render_depth=True,
lookat=[0, 0, 0])
pcds = []
for i in range(len(images)):
color = o3d.geometry.Image(images[i])
depth = o3d.geometry.Image(depth_images[i])
pinhole_camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(
images[i].shape[0],
images[i].shape[1],
intrinsic_matrices[i][0, 0],
intrinsic_matrices[i][1, 1],
intrinsic_matrices[i][0, 2],
intrinsic_matrices[i][1, 2]
)
rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth(
color, depth, convert_rgb_to_intensity=False, depth_scale=1.0
)
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
rgbd,
intrinsic=pinhole_camera_intrinsic
)
pcd.transform(np.linalg.inv(extrinsic_matrices[i]))
pcds.append(pcd)
combined_pcd = o3d.geometry.PointCloud()
for pcd in pcds: #downsample point cloud from each viewpoint
voxel_size = 0.01
pcd = pcd.voxel_down_sample(voxel_size=voxel_size)
combined_pcd += pcd
voxel_size = 0.005
while len(combined_pcd.points) > self.pcd_max_points: #globally downsample
voxel_size *= 1.01
combined_pcd = combined_pcd.voxel_down_sample(voxel_size=voxel_size)
#file saving stuff
directory_name = f"sample_{sample_id}"
if is_canonical:
directory_name = "canonical_" + directory_name
if is_test:
directory_name = "test_" + directory_name
unique_dir = os.path.join(self.save_dir, directory_name)
# Use FileLock to ensure only one actor creates the directory
lock_file = f"{unique_dir}.lock"
with FileLock(lock_file):
if not os.path.exists(unique_dir):
os.makedirs(unique_dir, exist_ok=True)
o3d.io.write_point_cloud(os.path.join(unique_dir, 'pc.ply'), combined_pcd)
np.save(os.path.join(unique_dir, 'joint_positions.npy'), joint_position)
# Save other files (these operations are safe to perform concurrently)
for i, img in enumerate(images):
img = Image.fromarray(img)
img.save(os.path.join(unique_dir, f"image_{i}.jpg"))
for i, img in enumerate(depth_images):
np.save(os.path.join(unique_dir, f"depth_{i}.npy"), img)
np.save(os.path.join(unique_dir, 'extrinsics.npy'), extrinsic_matrices)
np.save(os.path.join(unique_dir, 'intrinsics.npy'), intrinsic_matrices)
def render_images(self, joint_position, camera_params, render_depth=True, lookat=[0, 0, 0]):
num_camera_params = camera_params.shape[0]
images = []
depth_images = []
intrinsic_matrices = []
extrinsic_matrices = []
for j in range(num_camera_params):
cam = mujoco.MjvCamera()
mujoco.mjv_defaultCamera(cam)
cam.distance = camera_params[j, 0]
cam.azimuth = camera_params[j, 1]
cam.elevation = camera_params[j, 2]
cam.lookat = np.array(lookat)
self.data.qpos[:] = joint_position
mujoco.mj_step(self.model, self.data)
self.renderer.update_scene(self.data, camera=cam)
pixels = self.renderer.render()
if render_depth:
self.renderer.enable_depth_rendering()
depth = self.renderer.render()
self.renderer.disable_depth_rendering()
else:
depth = None
images.append(pixels)
depth_images.append(depth)
intrinsic_matrices.append(compute_camera_intrinsic_matrix(self.model, self.renderer, self.data))
extrinsic_matrices.append(compute_camera_extrinsic_matrix(cam))
return images, depth_images, intrinsic_matrices, extrinsic_matrices
def generate_camera_params(self): #this can be implemented in other ways
azimuth_range = np.linspace(-180, 180, 3)
elevations = [-45, 45]
radii = np.array([1.0, 2.0]) * args.camera_distance_factor
camera_params = np.zeros((len(azimuth_range) * len(elevations) * len(radii), 3))
azimuth_offset = np.random.uniform(-180, 180)
elevation_offset = np.random.uniform(-20, 20)
radius_offset = np.random.uniform(-0.5, 0.5) * args.camera_distance_factor
for i, (azimuth, elevation, radius) in enumerate(itertools.product(azimuth_range, elevations, radii)):
azimuth += azimuth_offset
elevation += elevation_offset
radius += radius_offset
camera_params[i] = [radius, azimuth, elevation]
return camera_params
def generate_data(num_actors, num_samples, model_xml_dir, save_dir, args, is_canonical=False, is_test=False, verbose=False):
actors = [MujocoActor.remote(actor_id, model_xml_dir, save_dir) for actor_id in range(num_actors)]
tasks = []
for i in range(num_samples):
actor_index = i % num_actors
task = actors[actor_index].generate_and_save_pc.remote(i, args, is_canonical, is_test, verbose)
tasks.append(task)
robot_name = os.path.basename(model_xml_dir)
sample_type = 'canonical' if is_canonical else 'test' if is_test else 'normal'
pbar = tqdm(total=num_samples, desc=f"Generating {sample_type} data for {robot_name}")
start_time = time.time()
while True:
sample_type_prefix = "canonical_" if is_canonical else "test_" if is_test else ""
num_files = len(glob.glob(os.path.join(save_dir, f"{sample_type_prefix}sample_*")))
pbar.n = num_files
pbar.refresh()
if num_files >= num_samples:
break
time.sleep(1)
elapsed_time = time.time() - start_time
rate = num_files / elapsed_time
pbar.set_description(f"Generating {sample_type} data for {robot_name} (Rate: {rate:.2f} files/sec)")
pbar.close()
# Clean up lock files
clean_lock_files(save_dir)
def clean_lock_files(directory):
lock_files = glob.glob(os.path.join(directory, "*.lock"))
for lock_file in lock_files:
try:
os.remove(lock_file)
except OSError as e:
print(f"Error deleting lock file {lock_file}: {e}")
if __name__ == "__main__":
import time
import argparse
import shutil
parser = argparse.ArgumentParser(description='Set model XML path and dataset name.')
parser.add_argument('--model_xml_dir', type=str, default="mujoco_menagerie/universal_robots_ur5e", help='Path to the model XML file.')
parser.add_argument('--dataset_name', type=str, default=None, help='Name of the dataset.')
parser.add_argument('--num_canonical_samples', type=int, default=500, help='Number of canonical samples.')
parser.add_argument('--num_samples', type=int, default=10000, help='Number of samples.')
parser.add_argument('--num_test', type=int, default=500, help='Number of test samples.')
parser.add_argument('--num_actors', type=int, default=20, help='Number of actors.')
parser.add_argument('--camera_distance_factor', type=float, default=1.0, help='Factor to scale the camera distance, change this depending on robot size.')
parser.add_argument('--debug', action='store_true', help='Debug mode.')
parser.add_argument('--verbose', action='store_true', help='Verbose mode.')
args = parser.parse_args()
model_xml_dir = args.model_xml_dir
if not args.dataset_name:
dataset_name = os.path.basename(model_xml_dir)
else:
dataset_name = args.dataset_name
timestr = time.strftime("%Y%m%d-%H%M%S")
save_dir = f"./data/{dataset_name}"
if os.path.exists(save_dir):
shutil.rmtree(save_dir)
os.makedirs(save_dir, exist_ok=True)
ray.init()
num_actors = args.num_actors
num_canonical_samples = args.num_canonical_samples
num_samples = args.num_samples
num_test = args.num_test
if args.debug:
num_samples = 100
num_canonical_samples = 12
num_test = 12
num_actors = 1
assert num_samples % num_actors == 0
assert num_canonical_samples % num_actors == 0
assert num_test % num_actors == 0
generate_data(num_actors,
num_canonical_samples,
model_xml_dir,
save_dir,
args=args,
is_canonical=True,
is_test=False,
verbose=args.verbose)
generate_data(num_actors, num_test, model_xml_dir, save_dir, args=args, is_test=True, is_canonical=False, verbose=args.verbose)
generate_data(num_actors, num_samples, model_xml_dir, save_dir, args=args, is_test=False, is_canonical=False, verbose=args.verbose)
# Final cleanup of any remaining lock files
clean_lock_files(save_dir)