forked from weizheliu/Context-Aware-Crowd-Counting
-
Notifications
You must be signed in to change notification settings - Fork 2
/
make_dataset.py
36 lines (31 loc) · 1.16 KB
/
make_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import h5py
import scipy.io as io
import PIL.Image as Image
import numpy as np
import os
import glob
from matplotlib import pyplot as plt
from scipy.ndimage.filters import gaussian_filter
from matplotlib import cm as CM
from image import *
# root is the path to ShanghaiTech dataset
root=''
part_B_train = os.path.join(root,'part_B_final/train_data','images')
part_B_test = os.path.join(root,'part_B_final/test_data','images')
path_sets = [part_B_train,part_B_test]
img_paths = []
for path in path_sets:
for img_path in glob.glob(os.path.join(path, '*.jpg')):
img_paths.append(img_path)
for img_path in img_paths:
print img_path
mat = io.loadmat(img_path.replace('.jpg','.mat').replace('images','ground_truth').replace('IMG_','GT_IMG_'))
img= plt.imread(img_path)
k = np.zeros((img.shape[0],img.shape[1]))
gt = mat["image_info"][0,0][0,0][0]
for i in range(0,len(gt)):
if int(gt[i][1])<img.shape[0] and int(gt[i][0])<img.shape[1]:
k[int(gt[i][1]),int(gt[i][0])]=1
k = gaussian_filter(k,15)
with h5py.File(img_path.replace('.jpg','.h5').replace('images','ground_truth'), 'w') as hf:
hf['density'] = k