-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutil.py
executable file
·180 lines (145 loc) · 5.47 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""This module contains simple helper functions """
from __future__ import print_function
import torch
import numpy as np
from PIL import Image
import os
import importlib
import argparse
from argparse import Namespace
import torchvision
from torchvision import transforms
import torch.nn.functional as F
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def load_image2(img_path, img_size=None):
image = Image.open(img_path)
if img_size is not None:
image = image.resize((img_size, img_size)) # change image size to (3, img_size, img_size)
transform = transforms.Compose([
transforms.ToTensor(),
])
image = transform(image)[:3, :, :].unsqueeze(0)
return image
def copyconf(default_opt, **kwargs):
conf = Namespace(**vars(default_opt))
for key in kwargs:
setattr(conf, key, kwargs[key])
return conf
def find_class_in_module(target_cls_name, module):
target_cls_name = target_cls_name.replace('_', '').lower()
clslib = importlib.import_module(module)
cls = None
for name, clsobj in clslib.__dict__.items():
if name.lower() == target_cls_name:
cls = clsobj
assert cls is not None, "In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % (module, target_cls_name)
return cls
def tensor2im(input_image, imtype=np.uint8):
""""Converts a Tensor array into a numpy image array.
Parameters:
input_image (tensor) -- the input image tensor array
imtype (type) -- the desired type of the converted numpy array
"""
if not isinstance(input_image, np.ndarray):
if isinstance(input_image, torch.Tensor): # get the data from a variable
image_tensor = input_image.data
else:
return input_image
image_numpy = image_tensor[0].clamp(-1.0, 1.0).cpu().float().numpy() # convert it into a numpy array
if image_numpy.shape[0] == 1: # grayscale to RGB
image_numpy = np.tile(image_numpy, (3, 1, 1))
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling
else: # if it is a numpy array, do nothing
image_numpy = input_image
return image_numpy.astype(imtype)
def diagnose_network(net, name='network'):
"""Calculate and print the mean of average absolute(gradients)
Parameters:
net (torch network) -- Torch network
name (str) -- the name of the network
"""
mean = 0.0
count = 0
for param in net.parameters():
if param.grad is not None:
mean += torch.mean(torch.abs(param.grad.data))
count += 1
if count > 0:
mean = mean / count
print(name)
print(mean)
def save_image(image_numpy, image_path, aspect_ratio=1.0):
"""Save a numpy image to the disk
Parameters:
image_numpy (numpy array) -- input numpy array
image_path (str) -- the path of the image
"""
image_pil = Image.fromarray(image_numpy)
h, w, _ = image_numpy.shape
if aspect_ratio is None:
pass
elif aspect_ratio > 1.0:
image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC)
elif aspect_ratio < 1.0:
image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC)
image_pil.save(image_path)
def print_numpy(x, val=True, shp=False):
"""Print the mean, min, max, median, std, and size of a numpy array
Parameters:
val (bool) -- if print the values of the numpy array
shp (bool) -- if print the shape of the numpy array
"""
x = x.astype(np.float64)
if shp:
print('shape,', x.shape)
if val:
x = x.flatten()
print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % (
np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))
def mkdirs(paths):
"""create empty directories if they don't exist
Parameters:
paths (str list) -- a list of directory paths
"""
if isinstance(paths, list) and not isinstance(paths, str):
for path in paths:
mkdir(path)
else:
mkdir(paths)
def mkdir(path):
"""create a single empty directory if it didn't exist
Parameters:
path (str) -- a single directory path
"""
if not os.path.exists(path):
os.makedirs(path)
def correct_resize_label(t, size):
device = t.device
t = t.detach().cpu()
resized = []
for i in range(t.size(0)):
one_t = t[i, :1]
one_np = np.transpose(one_t.numpy().astype(np.uint8), (1, 2, 0))
one_np = one_np[:, :, 0]
one_image = Image.fromarray(one_np).resize(size, Image.NEAREST)
resized_t = torch.from_numpy(np.array(one_image)).long()
resized.append(resized_t)
return torch.stack(resized, dim=0).to(device)
def correct_resize(t, size, mode=Image.BICUBIC):
device = t.device
t = t.detach().cpu()
resized = []
for i in range(t.size(0)):
one_t = t[i:i + 1]
one_image = Image.fromarray(tensor2im(one_t)).resize(size, Image.BICUBIC)
resized_t = torchvision.transforms.functional.to_tensor(one_image) * 2 - 1.0
resized.append(resized_t)
return torch.stack(resized, dim=0).to(device)