-
Notifications
You must be signed in to change notification settings - Fork 8
/
models.py
379 lines (308 loc) · 16.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from torchvision.models.detection import maskrcnn_resnet50_fpn
import torchvision.transforms as T
import copy
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn, Tensor
#ResNet-50 backbone
class ResNetCOCO(nn.Module):
def __init__(self, device = "cuda:0"):
super(ResNetCOCO, self).__init__()
self.resnet = maskrcnn_resnet50_fpn(pretrained=True).backbone.body.to(device)
self.device = device
def forward(self, x: torch.Tensor)-> torch.Tensor:
x = x.to(self.device)
x = self.resnet.conv1(x)
x = self.resnet.bn1(x)
x = self.resnet.relu(x)
x = self.resnet.maxpool(x)
x = self.resnet.layer1(x)
x = self.resnet.layer2(x)
x = self.resnet.layer3(x)
x = self.resnet.layer4(x)
bs, ch, _, _ = x.size()
x = x.view(bs, ch, -1).permute(0, 2, 1)
return x
class Transformer(nn.Module):
def __init__(self, d_model=512, img_hidden_dim = 2048, lm_dmodel = 768, nhead=8, num_encoder_layers=6,
num_decoder_layers=6, dim_feedforward=512, encoder_dropout=0.1, decoder_dropout = 0.2,
activation="relu", normalize_before=False,
return_intermediate_dec=False, device = "cuda:0"):
super().__init__()
self.device = device
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
encoder_dropout, activation, normalize_before).to(device)
encoder_norm = nn.LayerNorm(d_model)
encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm).to(device)
input_proj = nn.Linear(img_hidden_dim, d_model).to(device)
img_transform = nn.Linear(d_model, d_model).to(device)
text_transform = nn.Linear(lm_dmodel, d_model).to(device)
self.encoder = TransformerEncoderWrapper(encoder, input_proj, img_transform, text_transform, encoder_dropout, device).to(device)
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward,
decoder_dropout, activation, normalize_before).to(device)
decoder_norm = nn.LayerNorm(d_model)
decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm,
return_intermediate=return_intermediate_dec).to(device)
dropout = nn.Dropout(decoder_dropout)
self.decoder = TransformerDecoderWrapper(d_model, activation, decoder, dropout, device)
self.d_model = d_model
self.lm_dmodel = lm_dmodel
self.nhead = nhead
def forward(self, src: Tensor, tgt: Tensor, task:Tensor, src_mask: Optional[Tensor] = None, tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None,
querypos_embed: Optional[Tensor] = None, patchpos_embed: Optional[Tensor] = None):
memory, task_emb = self.encoder(src, mask=src_mask, task = task, src_key_padding_mask=src_key_padding_mask, patchpos_embed=patchpos_embed)
output = self.decoder(tgt, memory, task_emb = task_emb, tgt_mask=tgt_mask, memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
querypos_embed = querypos_embed, patchpos_embed = patchpos_embed)
return output
class TransformerEncoderWrapper(nn.Module):
def __init__(self, encoder, input_proj, img_transform, text_transform, dropout, device):
super().__init__()
self.device = device
self.encoder = encoder.to(device)
self.input_proj = input_proj.to(device)
self.img_transform = img_transform.to(device)
self.text_transform = text_transform.to(device)
self.dropout = nn.Dropout(dropout)
self._reset_parameters(self.encoder)
self._reset_parameters(self.input_proj)
self._reset_parameters(self.img_transform)
self._reset_parameters(self.text_transform)
def _reset_parameters(self, mod):
for p in mod.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, src, task,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
patchpos_embed: Optional[Tensor] = None):
src_proj = self.input_proj(src).permute(1,0,2)#input projection from 2048 -> d
output = self.encoder(src_proj, mask=mask, src_key_padding_mask=src_key_padding_mask, patchpos_embed=patchpos_embed)#transformer encoder
memory = self.img_transform(output)#project image features to multimodal space
task_emb = self.text_transform(task)#project task features to multimodal space
return memory, task_emb
class TransformerDecoderWrapper(nn.Module):
def __init__(self, d_model, activation, decoder, dropout, device):
super().__init__()
self.device = device
self.activation = _get_activation_fn(activation)
self.decoder = decoder.to(device)
self.dropout = dropout
self.linear = nn.Linear(d_model * 2, d_model)
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else pos(tensor)
def forward(self, tgt, memory, task_emb,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
querypos_embed: Optional[Tensor] = None,
patchpos_embed: Optional[Tensor] = None):
#vision-semantic joint embedding
memory_task = self.dropout(self.activation(self.linear(torch.cat([memory, task_emb.unsqueeze(0).repeat(memory.size(0),1,1)], dim = -1))))
#decoder
output = self.decoder(tgt, memory_task, tgt_mask=tgt_mask, memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
querypos_embed = querypos_embed, patchpos_embed = patchpos_embed)
return output
class TransformerEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers, norm=None):
super().__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(self, src,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
patchpos_embed: Optional[Tensor] = None):
output = src
for layer in self.layers:
output = layer(output, pos=patchpos_embed, src_mask = mask, src_key_padding_mask = src_key_padding_mask)
if self.norm is not None:
output = self.norm(output)
return output
class TransformerDecoder(nn.Module):
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
super().__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
self.return_intermediate = return_intermediate
def forward(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
querypos_embed: Optional[Tensor] = None,
patchpos_embed: Optional[Tensor] = None):
output = tgt
intermediate = []
for idx, layer in enumerate(self.layers):
output = layer(output, memory, tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
querypos_embed = querypos_embed,
patchpos_embed = patchpos_embed)
if self.return_intermediate:
intermediate.append(self.norm(output))
if self.norm is not None:
output = self.norm(output)
if self.return_intermediate:
intermediate.pop()
intermediate.append(output)
if self.return_intermediate:
return torch.stack(intermediate)
return output
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
activation="relu", normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else pos(tensor)
def forward_post(self,
src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
patchpos_embed: Optional[Tensor] = None):
q = k = self.with_pos_embed(src, patchpos_embed)
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src
def forward_pre(self, src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
src2 = self.norm1(src)
q = k = self.with_pos_embed(src2, pos)
src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src2 = self.norm2(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
src = src + self.dropout2(src2)
return src
def forward(self, src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
if self.normalize_before:
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
class TransformerDecoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
activation="relu", normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else pos + tensor
def forward_post(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
querypos_embed: Optional[Tensor] = None,
patchpos_embed: Optional[Tensor] = None):
q = k = v = self.with_pos_embed(tgt, querypos_embed)
tgt2 = self.self_attn(q, k, value=v, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, querypos_embed),
key=patchpos_embed(memory),
value=memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
def forward_pre(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
querypos_embed: Optional[Tensor] = None,
patchpos_embed: Optional[Tensor] = None):
tgt2 = self.norm1(tgt)
q = k = v = self.with_pos_embed(tgt2, querypos_embed)
tgt2 = self.self_attn(q, k, value=v, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
tgt2 = self.norm2(tgt)
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, querypos_embed),
key=patchpos_embed(memory),
value=memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout2(tgt2)
tgt2 = self.norm3(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout3(tgt2)
return tgt
def forward(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
querypos_embed: Optional[Tensor] = None,
patchpos_embed: Optional[Tensor] = None):
if self.normalize_before:
return self.forward_pre(tgt, memory, tgt_mask, memory_mask,
tgt_key_padding_mask, memory_key_padding_mask,
querypos_embed = querypos_embed,
patchpos_embed = patchpos_embed)
return self.forward_post(tgt, memory, tgt_mask, memory_mask,
tgt_key_padding_mask, memory_key_padding_mask,
querypos_embed = querypos_embed,
patchpos_embed = patchpos_embed)
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")