-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_distributed.py
216 lines (172 loc) · 7.93 KB
/
mnist_distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""Usage
pip install -r requirements.txt
# run locally
python mnist.py
# run remotely
# set your AWS_DEFAULT_REGION/AWS_ACCESS_KEY_ID/AWS_SECRET_ACCESS_KEY
python mnist.py --remote
"""
from __future__ import print_function
import argparse
import os
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0 and args.local_rank == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
if args.local_rank == 0:
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def worker(ddp=True):
"""
Main training script.
Args:
ddp: True if this script runs as part of DistributedDataParallel ensemble
"""
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
world_size = int(os.environ.get('WORLD_SIZE', 1))
rank = int(os.environ.get('RANK', 0))
if ddp:
dist.init_process_group(backend='gloo', init_method='env://')
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
# only download dataset once per machine, sync workers
if args.local_rank == 0:
datasets.MNIST('/tmp/data', download=True)
print(f"DDP: process {rank}/{world_size}")
if ddp:
dist.barrier()
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('/tmp/data', train=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('/tmp/data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = Net().to(device)
if ddp:
model = nn.parallel.DistributedDataParallel(model)
else:
model = nn.DataParallel(model, dim=1)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
if args.save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")
def format_args(dict_: dict):
"""Helper to format dict into "--key1=val2 --key2=val2" string"""
def item_to_arg(item: tuple):
k, v = item
if v is False or v is None:
return ''
if v is True:
return f'--{k}'
return f'--{k} {v}'
return ' '.join([item_to_arg(item) for item in dict_.items()])+' '
def remote_launcher():
import ncluster
job = ncluster.make_job(name='mnist_distributed',
image_name='Deep Learning AMI (Ubuntu) Version 23.0',
instance_type='c5.xlarge',
num_tasks=args.nnodes)
job.upload('mnist_distributed.py')
job.run('rm -Rf /tmp/data')
job.run('source activate pytorch_p36')
task0 = job.tasks[0]
for i, task in enumerate(job.tasks):
launcher_args = {'nproc_per_node': args.proc_per_node,
'nnodes': args.nnodes,
'node_rank': i,
'master_addr': task0.ip,
'master_port': 6016}
task.run((f'python -m torch.distributed.launch {format_args(launcher_args)} '
f'mnist_distributed.py --mode=worker'), non_blocking=True, stream_output=(i == 0))
def local_launcher():
os.system(f'python -m torch.distributed.launch --nproc_per_node={args.proc_per_node} mnist_distributed.py --mode=worker ')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
parser.add_argument('--remote', action='store_true', default=False,
help='run training remotely')
parser.add_argument('--proc_per_node', default=2, help='number of processes per machine')
parser.add_argument('--nnodes', default=2, type=int, help='number of nodes (machines)')
parser.add_argument('--mode', default='localworker', choices=['remote', 'local', 'worker', 'localworker'], help="local: spawn multiple processes locally, remote: launch multiple machines/processes on AWS, worker: DDP aware single process process version, localworker: standalone single process version")
# worker args
parser.add_argument('--local_rank', default=0, type=int)
args = parser.parse_args()
if args.mode == 'remote':
remote_launcher()
elif args.mode == 'local':
local_launcher()
elif args.mode == 'worker':
worker()
elif args.mode == 'localworker':
worker(ddp=False)