forked from Isilon/isilon_data_insights_connector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathisi_data_insights_daemon.py
228 lines (186 loc) · 8.32 KB
/
isi_data_insights_daemon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from daemons.prefab import run
import logging
import sys
import time
import urllib3.exceptions
from isi_stats_client import IsiStatsClient
LOG = logging.getLogger(__name__)
class ClusterConfig(object):
def __init__(self,
address, name, version, isi_sdk, api_client):
self.address = address
self.name = name
self.version = version
self.isi_sdk = isi_sdk
self.api_client = api_client
def __eq__(self, other):
"""
Override __eq__ so that we can store this in a list and check for its
existence.
"""
return self.address == other.address
def __hash__(self):
"""
Override __hash__ so that we can store this in a dict.
"""
return hash(str(self))
def __repr__(self):
return self.name
class StatsConfig(object):
def __init__(self, cluster_configs, stats, update_interval):
self.cluster_configs = cluster_configs
self.stats = stats
self.update_interval = update_interval
class StatSet(object):
def __init__(self):
self.cluster_configs = []
self.stats = set()
class UpdateInterval(object):
def __init__(self, interval):
self.interval = interval
self.last_update = 0.0
class IsiDataInsightsDaemon(run.RunDaemon):
"""
Periodically query a list of OneFS clusters for statistics and
process them via a configurable stats processor module.
"""
def __init__(self, pidfile):
"""
Initialize.
:param: pidfile is the path to the daemon's pidfile (required).
"""
super(IsiDataInsightsDaemon, self).__init__(pidfile=pidfile)
self._stat_sets = {}
self._update_intervals = []
self._stats_processor = None
self._stats_processor_args = None
def set_stats_processor(self, stats_processor, processor_args):
if hasattr(stats_processor, 'process') is False:
raise AttributeError(
"Results processor module has no process() function.")
self._stats_processor = stats_processor
self._stats_processor_args = processor_args
# start the stats processor module
if hasattr(self._stats_processor, 'start') is True:
# need to start the processor now before the process is daemonized
# in case the plugin needs to prompt the user for input prior to
# starting.
LOG.info("Starting stats processor.")
self._stats_processor.start(self._stats_processor_args)
def add_stats(self, stats_config):
"""
Add set of stats to be queried.
:param: stats_config is an instance of StatsConfig, which defines the
list of stats, an update interval, and the list of clusters to query.
"""
try:
# organize the stat sets by update interval
stat_set = self._stat_sets[stats_config.update_interval]
except KeyError:
self._stat_sets[stats_config.update_interval] = stat_set = \
StatSet()
self._update_intervals.append(
UpdateInterval(stats_config.update_interval))
# add the new clusters to the list of clusters associated with this
# update interval's stat set.
for cluster in stats_config.cluster_configs:
if cluster not in stat_set.cluster_configs:
stat_set.cluster_configs.append(cluster)
# add the new stats to the stat set
for stat_name in stats_config.stats:
stat_set.stats.add(stat_name)
def get_stat_set_count(self):
return len(self._stat_sets)
def get_next_stat_set(self):
for update_interval, stat_set in self._stat_sets.iteritems():
yield update_interval, stat_set
def run(self):
"""
Loop through stat sets, query for their values, and process them with
the stats processor.
"""
LOG.info("Starting.")
sleep_secs = 0
start_time = time.time()
# setup the last update time of each update interval so that they all
# get updated on the first pass.
for update_interval in self._update_intervals:
update_interval.last_update = start_time - update_interval.interval
while True:
LOG.debug("Sleeping for %f seconds.", sleep_secs)
time.sleep(sleep_secs)
# query and process the stat sets whose update interval has been
# hit or surpassed.
self._query_and_process_stats(time.time())
cur_time = time.time()
# figure out the shortest amount of time until the next update is
# needed and sleep for that amount of time.
min_next_update = sys.float_info.max
for update_interval in self._update_intervals:
next_update_time = \
update_interval.last_update + update_interval.interval
time_to_next_update = next_update_time - cur_time
min_next_update = min(time_to_next_update, min_next_update)
sleep_secs = max(0.0, min_next_update)
def shutdown(self, signum):
"""
Stops the stats processor prior to stopping the daemon.
"""
LOG.info("Stoppping.")
if self._stats_processor is not None \
and hasattr(self._stats_processor, 'stop') is True:
LOG.info("Stopping stats processor.")
self._stats_processor.stop()
super(IsiDataInsightsDaemon, self).shutdown(signum)
def _query_and_process_stats(self, cur_time):
"""
Build a unique set of stats to update per cluster from each set of
stats that are in need of updating based on the amount of time elapsed
since their last update.
"""
# there might be more than one stat set that needs updating and thus
# there might be common clusters between those stat sets, so this loop
# makes sure that we only send one query to each unique cluster.
cluster_stats = {}
for update_interval in self._update_intervals:
# if the update_interval is less than or equal to the elapsed_time
# then we need to query the stats associated with this update
# interval.
time_since_last_update = cur_time - update_interval.last_update
if time_since_last_update >= update_interval.interval:
LOG.debug("updating interval:%d time_since_last_update: %f",
update_interval.interval, time_since_last_update)
# update the last_update time
update_interval.last_update = cur_time
# add the stats from stat set to their respective cluster_stats
cur_stat_set = self._stat_sets[update_interval.interval]
for stat_name in cur_stat_set.stats:
for cluster in cur_stat_set.cluster_configs:
try:
cluster_stat_set = cluster_stats[cluster]
except KeyError:
cluster_stats[cluster] = cluster_stat_set = set()
cluster_stat_set.add(stat_name)
# now we have a unique list of clusters to query, so query them
for cluster, stats in cluster_stats.iteritems():
LOG.debug("Querying cluster %s %f", cluster.name, cluster.version)
LOG.debug("Querying stats %d.", len(stats))
stats_client = \
IsiStatsClient(
cluster.isi_sdk.StatisticsApi(cluster.api_client))
# query the current cluster with the current set of stats
try:
if cluster.version >= 8.0:
results = stats_client.query_stats(stats)
else:
results = []
for stat in stats:
result = stats_client.query_stat(stat)
results.extend(result)
except (urllib3.exceptions.HTTPError,
cluster.isi_sdk.rest.ApiException) as http_exc:
LOG.error("Failed to query stats from cluster %s, exception "\
"raised: %s", cluster.name, str(http_exc))
continue
# process the results
self._stats_processor.process(cluster.name, results)