-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpanorama_image_cropper_exr.py
executable file
·131 lines (102 loc) · 5.04 KB
/
panorama_image_cropper_exr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import cv2
import argparse
import math
import OpenEXR, Imath
def load_exr(in_file):
pt = Imath.PixelType(Imath.PixelType.FLOAT)
golden = OpenEXR.InputFile(in_file)
dw = golden.header()['dataWindow']
size = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)
redstr = golden.channel('R', pt)
red = np.fromstring(redstr, dtype = np.float32)
red.shape = (size[1], size[0]) # Numpy arrays are (row, col)
greenstr = golden.channel('G', pt)
green = np.fromstring(greenstr, dtype = np.float32)
green.shape = (size[1], size[0]) # Numpy arrays are (row, col)
bluestr = golden.channel('B', pt)
blue = np.fromstring(bluestr, dtype = np.float32)
blue.shape = (size[1], size[0]) # Numpy arrays are (row, col)
img = np.zeros((size[1], size[0], 3), dtype=np.float32)
img[:, :, 0] = red
img[:, :, 1] = green
img[:, :, 2] = blue
return img
def write_exr(out_file, data):
exr = OpenEXR.OutputFile(out_file, OpenEXR.Header(data.shape[1], data.shape[0]))
red = data[:, :, 0]
green = data[:, :, 1]
blue = data[:, :, 2]
exr.writePixels({'R': red.tostring(), 'G': green.tostring(), 'B': blue.tostring()})
def crop_panorama_image(img, theta=0.0, phi=0.0, res_x=512, res_y=512, fov=60.0, debug=False):
img_x = img.shape[0]
img_y = img.shape[1]
theta = theta / 180 * math.pi
phi = phi / 180 * math.pi
fov_x = fov
aspect_ratio = res_y * 1.0 / res_x
half_len_x = math.tan(fov_x / 180 * math.pi / 2)
half_len_y = aspect_ratio * half_len_x
pixel_len_x = 2 * half_len_x / res_x
pixel_len_y = 2 * half_len_y / res_y
map_x = np.zeros((res_x, res_y), dtype=np.float32)
map_y = np.zeros((res_x, res_y), dtype=np.float32)
axis_y = math.cos(theta)
axis_z = math.sin(theta)
axis_x = 0
# theta rotation matrix
cos_theta = math.cos(theta)
sin_theta = math.sin(theta)
theta_rot_mat = np.array([[1, 0, 0], \
[0, cos_theta, -sin_theta], \
[0, sin_theta, cos_theta]], dtype=np.float32)
# phi rotation matrix
cos_phi = math.cos(phi)
sin_phi = -math.sin(phi)
phi_rot_mat = np.array([[cos_phi + axis_x**2 * (1 - cos_phi), \
axis_x * axis_y * (1 - cos_phi) - axis_z * sin_phi, \
axis_x * axis_z * (1 - cos_phi) + axis_y * sin_phi], \
[axis_y * axis_x * (1 - cos_phi) + axis_z * sin_phi, \
cos_phi + axis_y**2 * (1 - cos_phi), \
axis_y * axis_z * (1 - cos_phi) - axis_x * sin_phi], \
[axis_z * axis_x * (1 - cos_phi) - axis_y * sin_phi, \
axis_z * axis_y * (1 - cos_phi) + axis_x * sin_phi, \
cos_phi + axis_z**2 * (1 - cos_phi)]], dtype=np.float32)
map_x = np.tile(np.array(np.arange(res_x), dtype=np.float32), (res_y, 1)).T
map_y = np.tile(np.array(np.arange(res_y), dtype=np.float32), (res_x, 1))
map_x = map_x * pixel_len_x + pixel_len_x / 2 - half_len_x
map_y = map_y * pixel_len_y + pixel_len_y / 2 - half_len_y
map_z = np.ones((res_x, res_y)).astype(np.float32) * -1
ind = np.reshape(np.concatenate((np.expand_dims(map_x, 2), np.expand_dims(map_y, 2), \
np.expand_dims(map_z, 2)), axis=2), [-1, 3]).T
ind = theta_rot_mat.dot(ind)
ind = phi_rot_mat.dot(ind)
vec_len = np.sqrt(np.sum(ind**2, axis=0))
ind /= np.tile(vec_len, (3, 1))
cur_phi = np.arcsin(ind[0, :])
cur_theta = np.arctan2(ind[1, :], -ind[2, :])
map_x = (cur_phi + math.pi/2) / math.pi * img_x
map_y = cur_theta % (2 * math.pi) / (2 * math.pi) * img_y
map_x = np.reshape(map_x, [res_x, res_y])
map_y = np.reshape(map_y, [res_x, res_y])
if debug:
for x in range(res_x):
for y in range(res_y):
print '(%.2f, %.2f)\t' % (map_x[x, y], map_y[x, y]),
print
return cv2.remap(img, map_y, map_x, cv2.INTER_LINEAR, borderMode=cv2.BORDER_WRAP)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('input_image', type=str, help='Input Panorama Image')
parser.add_argument('output_image', type=str, help='Output Panorama Image')
parser.add_argument('--theta', type=float, default=0.0, help='Theta angle (yaw) in range [-180, 180] degrees [default: 0.0]')
parser.add_argument('--phi', type=float, default=0.0, help='Phi angle (pitch) in range [-90, 90) degrees [default: 0.0]')
parser.add_argument('--resolution_x', type=int, default=256, help='Resolution of the output image width [default: 256]')
parser.add_argument('--resolution_y', type=int, default=256, help='Resolution of the output image height [default: 256]')
parser.add_argument('--fov', type=float, default=60.0, help='Field of View for image height in range [0, 180] degrees [default: 60.0]')
parser.add_argument('--debug', type=bool, default=False, help='Debug mode')
args = parser.parse_args()
img = load_exr(args.input_image)
out_img = crop_panorama_image(img, theta=args.theta, phi=args.phi, res_x=args.resolution_x, \
res_y=args.resolution_y, fov=args.fov, debug=args.debug)
write_exr(args.output_image, out_img)