forked from mystic123/tensorflow-yolo-v3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert_weights.py
56 lines (41 loc) · 1.57 KB
/
convert_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# -*- coding: utf-8 -*-
import tensorflow as tf
import yolo_v3
import yolo_v3_tiny
from utils import load_coco_names, load_weights
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string(
'class_names', 'coco.names', 'File with class names')
tf.app.flags.DEFINE_string(
'weights_file', 'yolov3.weights', 'Binary file with detector weights')
tf.app.flags.DEFINE_string(
'data_format', 'NCHW', 'Data format: NCHW (gpu only) / NHWC')
tf.app.flags.DEFINE_bool(
'tiny', False, 'Use tiny version of YOLOv3')
tf.app.flags.DEFINE_bool(
'spp', False, 'Use SPP version of YOLOv3')
tf.app.flags.DEFINE_string(
'ckpt_file', './saved_model/model.ckpt', 'Chceckpoint file')
def main(argv=None):
if FLAGS.tiny:
model = yolo_v3_tiny.yolo_v3_tiny
elif FLAGS.spp:
model = yolo_v3.yolo_v3_spp
else:
model = yolo_v3.yolo_v3
classes = load_coco_names(FLAGS.class_names)
# placeholder for detector inputs
# any size > 320 will work here
inputs = tf.placeholder(tf.float32, [None, 416, 416, 3])
with tf.variable_scope('detector'):
detections = model(inputs, len(classes),
data_format=FLAGS.data_format)
load_ops = load_weights(tf.global_variables(
scope='detector'), FLAGS.weights_file)
saver = tf.train.Saver(tf.global_variables(scope='detector'))
with tf.Session() as sess:
sess.run(load_ops)
save_path = saver.save(sess, save_path=FLAGS.ckpt_file)
print('Model saved in path: {}'.format(save_path))
if __name__ == '__main__':
tf.app.run()