forked from NorskRegnesentral/weak-supervision-for-NER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.py
301 lines (256 loc) · 14.9 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import numpy as np
import pandas
import sklearn.metrics
import math
CONLL_TO_RETAIN = {"PER", "MISC", "ORG", "LOC"}
CONLL_MAPPINGS = {"PERSON":"PER", "COMPANY":"ORG", "GPE":"LOC", 'EVENT':"MISC", 'FAC':"MISC", 'LANGUAGE':"MISC",
'LAW':"MISC", 'NORP':"MISC", 'PRODUCT':"MISC",'WORK_OF_ART':"MISC"}
def evaluate(docs, target_sources, labels_to_map=None, labels_to_keep=None):
"""Extracts the evaluation results for one or more sources, and add them to a pandas DataFrame."""
if isinstance(target_sources, str):
target_sources = [target_sources]
records = []
for source in target_sources:
results = get_results(docs, source, labels_to_map, labels_to_keep)
# Put the results into a pandas dataframe
for name in sorted(labels_to_keep) + ["micro", "weighted", "macro"]:
if name in results:
record = results[name]
record["label"] = name
record["model"] = source
if name in labels_to_keep:
record["proportion"] = results["label_weights"][name]
records.append(record)
df = pandas.DataFrame.from_records(records)
df["proportion"] = df.proportion.apply(lambda x: "%.1f %%"%(x*100) if not np.isnan(x) else "")
df["token_cee"] = df.token_cee.apply(lambda x: str(x) if not np.isnan(x) else "")
df = df.set_index(["label", "proportion", "model"]).sort_index()
df = df[["token_precision", "token_recall", "token_f1", "token_cee",
"entity_precision", "entity_recall", "entity_f1"]]
print("HERE")
return df
def get_results(docs, target_source, labels_to_map=None, labels_to_keep=None, conf_threshold=0.5):
"""Computes the usual metrics (precision, recall, F1, cross-entropy) on the dataset, using the spacy entities
in each document as gold standard, and the annotations of a given source as the predicted values"""
# We start by computing the TP, FP and FN values
tok_tp = {}
tok_fp = {}
tok_fn ={}
tok_logloss = 0
tok_nb = 0
ent_tp ={}
ent_fp = {}
ent_fn = {}
ent_support = {}
tok_support = {}
for doc in docs:
source_annotations = doc.user_data["annotations"][target_source]
# We may need to do some mapping / filtering on the entities (eg. mapping PERSON to PER),
# depending on the corpus we are dealing with
spans = set()
for (start, end), vals in source_annotations.items():
if len(vals)>0:
best_val, best_conf = sorted(vals, key=lambda x: x[1])[-1]
if labels_to_map is not None:
best_val = labels_to_map.get(best_val, best_val)
if labels_to_keep is not None and best_val not in labels_to_keep:
continue
elif best_conf >= conf_threshold:
spans.add((start,end, best_val))
all_labels = {ent.label_ for ent in doc.ents} | {label for _,_,label in spans}
for label in all_labels:
true_spans = {(ent.start, ent.end) for ent in doc.ents if ent.label_==label}
pred_spans = {(start,end) for (start,end, label2) in spans if label2==label}
# Normalisation of dates (with or without prepositions / articles)
if label=="DATE":
true_spans = {(start+1 if doc[start].lower_ in {"in","on","a","the", "for", "an", "at"} else start, end)
for (start, end) in true_spans}
pred_spans = {(start+1 if doc[start].lower_ in {"in","on","a","the", "for", "an", "at"} else start, end)
for (start, end) in pred_spans}
ent_tp[label] = ent_tp.get(label,0) + len(true_spans.intersection(pred_spans))
ent_fp[label] = ent_fp.get(label,0) + len(pred_spans - true_spans)
ent_fn[label] = ent_fn.get(label,0) + len(true_spans - pred_spans)
ent_support[label] = ent_support.get(label, 0) + len(true_spans)
true_tok_labels = {i for start,end in true_spans for i in range(start, end)}
pred_tok_labels = {i for start,end in pred_spans for i in range(start, end)}
tok_tp[label] = tok_tp.get(label, 0) + len(true_tok_labels.intersection(pred_tok_labels))
tok_fp[label] = tok_fp.get(label, 0) + len(pred_tok_labels - true_tok_labels)
tok_fn[label] = tok_fn.get(label,0) + len(true_tok_labels - pred_tok_labels)
tok_support[label] = tok_support.get(label, 0) + len(true_tok_labels)
if len(doc.ents) > 0:
tok_logloss += compute_logloss(doc, target_source, labels_to_map)
tok_nb += len(doc)
# We then compute the metrics themselves
results = {}
for label in ent_support:
ent_pred = ent_tp[label]+ent_fp[label] + 1E-10
ent_true = ent_tp[label]+ent_fn[label] + 1E-10
tok_pred = tok_tp[label]+tok_fp[label] + 1E-10
tok_true = tok_tp[label]+tok_fn[label] + 1E-10
results[label] = {}
results[label]["entity_precision"] = round(ent_tp[label]/ent_pred, 3)
results[label]["entity_recall"] = round(ent_tp[label]/ent_true, 3)
results[label]["token_precision"] = round(tok_tp[label]/tok_pred, 3)
results[label]["token_recall"] = round(tok_tp[label]/tok_true, 3)
ent_f1_numerator = (results[label]["entity_precision"] * results[label]["entity_recall"])
ent_f1_denominator = (results[label]["entity_precision"] +results[label]["entity_recall"]) + 1E-10
results[label]["entity_f1"] = 2*round(ent_f1_numerator / ent_f1_denominator, 3)
tok_f1_numerator = (results[label]["token_precision"] * results[label]["token_recall"])
tok_f1_denominator = (results[label]["token_precision"] +results[label]["token_recall"]) + 1E-10
results[label]["token_f1"] = 2*round(tok_f1_numerator / tok_f1_denominator, 3)
results["macro"] = {"entity_precision":round(np.mean([results[l]["entity_precision"] for l in ent_support]), 3),
"entity_recall":round(np.mean([results[l]["entity_recall"] for l in ent_support]), 3),
"token_precision":round(np.mean([results[l]["token_precision"] for l in ent_support]), 3),
"token_recall":round(np.mean([results[l]["token_recall"] for l in ent_support]), 3)}
label_weights = {l:ent_support[l]/sum(ent_support.values()) for l in ent_support}
results["label_weights"] = label_weights
results["weighted"] = {"entity_precision":round(np.sum([results[l]["entity_precision"]*label_weights[l]
for l in ent_support]), 3),
"entity_recall":round(np.sum([results[l]["entity_recall"]*label_weights[l]
for l in ent_support]), 3),
"token_precision":round(np.sum([results[l]["token_precision"]*label_weights[l]
for l in ent_support]), 3),
"token_recall":round(np.sum([results[l]["token_recall"]*label_weights[l]
for l in ent_support]), 3)}
ent_pred = sum([ent_tp[l] for l in ent_support]) + sum([ent_fp[l] for l in ent_support]) + 1E-10
ent_true = sum([ent_tp[l] for l in ent_support]) + sum([ent_fn[l] for l in ent_support]) + 1E-10
tok_pred = sum([tok_tp[l] for l in ent_support]) + sum([tok_fp[l] for l in ent_support]) + 1E-10
tok_true = sum([tok_tp[l] for l in ent_support]) + sum([tok_fn[l] for l in ent_support]) + 1E-10
results["micro"] = {"entity_precision":round(sum([ent_tp[l] for l in ent_support]) / ent_pred, 3),
"entity_recall":round(sum([ent_tp[l] for l in ent_support]) / ent_true, 3),
"token_precision":round(sum([tok_tp[l] for l in ent_support]) /tok_pred, 3),
"token_recall":round(sum([tok_tp[l] for l in ent_support]) / tok_true, 3),
"token_cee":round(tok_logloss/tok_nb, 3)}
for metric in ["macro", "weighted", "micro"]:
ent_f1_numerator = (results[metric]["entity_precision"] * results[metric]["entity_recall"])
ent_f1_denominator = (results[metric]["entity_precision"] +results[metric]["entity_recall"]) + 1E-10
results[metric]["entity_f1"] = 2*round(ent_f1_numerator / ent_f1_denominator, 3)
tok_f1_numerator = (results[metric]["token_precision"] * results[metric]["token_recall"])
tok_f1_denominator = (results[metric]["token_precision"] +results[metric]["token_recall"]) + 1E-10
results[metric]["token_f1"] = 2*round(tok_f1_numerator / tok_f1_denominator, 3)
return results
def compute_logloss(doc, target_source, labels_to_map=None):
all_labels = {ent.label_ for ent in doc.ents}
pos_labels = ["O"] + ["%s-%s"%(bilu,label) for label in sorted(all_labels) for bilu in "BILU"]
pos_label_indices = {pos_label:i for i, pos_label in enumerate(pos_labels)}
gold_probs = np.zeros((len(doc), 1+len(all_labels)*4))
for ent in doc.ents:
if ent.end==ent.start+1:
index = pos_label_indices["U-%s"%ent.label_]
gold_probs[ent.start, index] = 1
else:
index = pos_label_indices["B-%s"%ent.label_]
gold_probs[ent.start, index] = 1
for i in range(ent.start+1, ent.end-1):
index = pos_label_indices["I-%s"%ent.label_]
gold_probs[i, index] = 1
index = pos_label_indices["L-%s"%ent.label_]
gold_probs[ent.end-1, index] = 1
gold_probs[:,0] = 1-gold_probs.sum(axis=1)
pred_probs = np.zeros(gold_probs.shape)
for (start, end), vals in doc.user_data["annotations"][target_source].items():
if end > len(doc):
print("bad boundary")
end = len(doc)
for label, conf in vals:
if labels_to_map is not None:
label = labels_to_map.get(label, label)
if label not in all_labels:
continue
if end==start+1:
index = pos_label_indices["U-%s"%label]
pred_probs[start, index] = conf
else:
index = pos_label_indices["B-%s"%label]
pred_probs[start, index] = conf
for i in range(start+1, end-1):
index = pos_label_indices["I-%s"%label]
pred_probs[i, index] = conf
index = pos_label_indices["L-%s"%label]
pred_probs[end-1, index] = conf
pred_probs[:,0] = 1-pred_probs.sum(axis=1)
loss = sklearn.metrics.log_loss(gold_probs, pred_probs, normalize=False)
return loss
def get_crowd_data():
crowd_docs = []
import spacy, itertools, annotations, spacy_wrapper, json
nlp = spacy.load("en_core_web_md",disable=["tagger", "parser", "ner"])
pipe1 = annotations.docbin_reader("./data/reuters.docbin")
reuters_docs = []
pipe_stream0, pipe_stream1 = itertools.tee(pipe1, 2)
pipe2 = nlp.pipe((x.text for x in pipe_stream0))
nb_written = 0
for i, (doc, doc2) in enumerate(zip(pipe_stream1, pipe2)):
if "&" in doc.text or "<" in doc.text or ">" in doc.text:
continue
corrected = spacy_wrapper._correct_tokenisation(doc2)
if [tok.text for tok in corrected]!=[tok.text for tok in doc2]:
continue
reuters_docs.append(doc)
nb_written += 1
if nb_written >= 1000:
break
pipe1 = annotations.docbin_reader("./data/bloomberg1.docbin")
bloomberg_docs = []
pipe_stream0, pipe_stream1 = itertools.tee(pipe1, 2)
pipe2 = nlp.pipe((x.text for x in pipe_stream0))
nb_written = 0
for i, (doc, doc2) in enumerate(zip(pipe_stream1, pipe2)):
if "&" in doc.text or "<" in doc.text or ">" in doc.text:
continue
corrected = spacy_wrapper._correct_tokenisation(doc2)
if [tok.text for tok in corrected]!=[tok.text for tok in doc2]:
continue
bloomberg_docs.append(doc)
nb_written += 1
if nb_written >= 1000:
break
print("Number of read documents:", len(reuters_docs), len(bloomberg_docs))
crowd_docs = []
dic = json.load(open("data/second_launch_annotations.json", "r"))
for k, v in dic.items():
if v["source"]=="Bloomberg":
doc = bloomberg_docs[int(v["source_doc"])]
else:
doc = reuters_docs[int(v["source_doc"])]
for sent in doc.sents:
if sent.text.strip()==v["original_text"].strip():
for span in v["annotated_text"].split():
if "/" in span:
entity = span.split("/")[1].upper()
start = int(span.split("-")[0])
end = int(span.split("-")[1].split("/")[0])+1
ent_span = doc.char_span(sent.start_char+start, sent.start_char+end)
if ent_span is None:
print("strange span", sent, span)
continue
if "crowd" not in doc.user_data["annotations"]:
doc.user_data["annotations"]["crowd"] = {}
doc.user_data["annotations"]["crowd"][(ent_span.start, ent_span.end)] = ((entity,1.0),)
sent2 = sent.as_doc()
sent2.user_data["annotations"] = {}
for source in doc.user_data["annotations"]:
if source =="crowd_sents":
continue
sent2.user_data["annotations"][source] = {}
for (start,end), vals in doc.user_data["annotations"][source].items():
if start >=sent.start and start < sent.end:
sent2.user_data["annotations"][source][(start-sent.start, end-sent.start)] = vals
crowd_docs.append(sent2)
for doc in crowd_docs:
if "crowd" not in doc.user_data["annotations"]:
continue
spans = []
for (start,end) in sorted(doc.user_data["annotations"]["crowd"]):
for val, conf in doc.user_data["annotations"]["crowd"][(start,end)]:
if spans:
other_start, other_end = spans[-1].start, spans[-1].end
else:
other_start, other_end = 0,0
if other_end > start:
print("overlap between", start, end, other_start, other_end)
spans = spans[:-1]
start = other_start
spans.append(spacy.tokens.Span(doc, start, end, nlp.vocab.strings[val if val!="DATETIME" else "DATE"]))
doc.ents = tuple(spans)
return crowd_docs