-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathrun_plot_loss.m
169 lines (124 loc) · 8.3 KB
/
run_plot_loss.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
%% DFM SIMULATION STUDY: PLOT BIAS/VARIANCE LOSSES
% Dake Li, Mikkel Plagborg-Møller and Christian Wolf
%% HOUSEKEEPING
clc
clear all
close all
addpath('Plotting_Functions')
addpath(genpath(fullfile('..', 'Subroutines')))
%% SETTINGS
% select robustness check mode
mode_select = 1; % options: 1 (baseline), 2 (small sample), 3 (large sample),
% 4 (salient series), 5 (more observables), 6 (first diff)
% select lag length specifications
lags_select = 2; % options: 1 (AIC), 2 (4 lags), 3 (8 lags), 4 (12 lags)
% select and group experiments
exper_select_group = {[2,5], [3,6], [1,4]}; % combine G and MP for observed shock, recursive, and IV
% select estimation methods for each experiment
methods_iv_select = [1 2 3 4 5 6 7 8];
methods_obsshock_select = [1 2 3 4 5 6 7];
methods_recursive_select = [1 2 3 4 5 6 7];
% select a subset of DGPs
DGP_select = 0; % options: 0 (all DGPs), 1 (specifications with asset price & sentiment),
% 2 (low degree of invertibility), 3 (high degree of invertibility)
% regress bias/std on variable category counts
reg_cat = 1; % if run regression?
reg_cat_horz = []; % if non-empty, only use subset of horizons for regression (e.g., [1 2] means first and second estimated horizons)
% report quantile loss across DGPs
loss_quant = 0.5; % report which quantile loss across DGPs? (default is median loss, i.e. 0.5)
% Apply shared settings
settings_shared;
%% FIGURES
for n_mode=1:length(mode_folders) % For each robustness check mode...
for nf=1:length(lags_folders) % For each lag-order folder...
for ne=1:length(exper_files) % For each experiment in folder...
%----------------------------------------------------------------
% Load Results
%----------------------------------------------------------------
load_results;
% see if ready to plot for this group of experiments
if exper_group_end(ne) == 0
continue;
end
% keep only the selected subset of DGPs
if DGP_select > 0
DGP_selected = arrayfun(@(x) select_DGP_fn(x,res), 1:res.settings.specifications.n_spec)'; % binary DGP selection label
res = combine_struct(res,[],[],DGP_selected);
end
%----------------------------------------------------------------
% Prepare regression on variable category counts (if desired)
%----------------------------------------------------------------
if reg_cat==1
% Mapping between variables and categories
aux = zeros(res.DF_model.n_y,1);
aux(res.settings.specifications.random_category_range(:,1)) = 1;
var_cat = cumsum(aux); % mapping between variables and categories
spec_cat = var_cat(res.settings.specifications.var_select); % list of categories included in each DGP
% Categories in each DGP
num_cat = size(res.settings.specifications.random_category_range,1); % no. of categories
aux2 = reshape(bsxfun(@eq,spec_cat(:),1:num_cat),res.settings.specifications.n_spec,res.settings.specifications.n_var,num_cat);
spec_cat_num = permute(sum(aux2,2),[1 3 2]); % category counts for each DGP
% Covariate matrix for regressions
aux3 = repmat(eye(res.settings.est.IRF_hor),res.settings.specifications.n_spec,1); % indicators for horizon
the_reg_cat_horz = reg_cat_horz;
if isempty(the_reg_cat_horz)
the_reg_cat_horz = 1:res.settings.est.IRF_hor; % all horizons
end
reg_sel = any(aux3(:,the_reg_cat_horz),2); % include only selected horizons in regressions
aux4 = kron(spec_cat_num,ones(res.settings.est.IRF_hor,1));
reg_cat_X = [aux4(:,1:end-1) aux3(:,the_reg_cat_horz)]; % omit last category and any undesired horizons
reg_cat_vars = [strcat('cat', cellfun(@num2str, num2cell(1:num_cat-1), 'UniformOutput', false)) strcat('h', cellfun(@num2str, num2cell(res.settings.est.IRF_select(the_reg_cat_horz)-1), 'UniformOutput', false))];
reg_cat_vars = reg_cat_vars(:);
clearvars aux aux2 aux3 aux4;
end
%----------------------------------------------------------------
% Compute Reporting Results
%----------------------------------------------------------------
the_true_irf = res.DF_model.target_irf; % True IRF
the_rms_irf = sqrt(mean(the_true_irf.^2)); % Root average squared true IRF across horizons
% Compute robust statistics
q1_idx = stat_index(0.25, res.settings); % Index of first quartile
med_idx = stat_index(0.5, res.settings); % Index of median
q3_idx = stat_index(0.75, res.settings); % Index of third quartile
the_fields = fieldnames(res.results.irf);
for ii=1:length(the_fields)
res.results.medBIAS2.(the_fields{ii}) = (squeeze(res.results.irf.(the_fields{ii})(:,med_idx,:))-the_true_irf).^2; % Median bias squared
res.results.IQR2.(the_fields{ii}) = squeeze(res.results.irf.(the_fields{ii})(:,q3_idx,:)-res.results.irf.(the_fields{ii})(:,q1_idx,:)).^2; % IQR squared
end
%----------------------------------------------------------------
% Plot Results
%----------------------------------------------------------------
the_objects = {'BIAS2', 'VCE', 'medBIAS2', 'IQR2'}; % Objects to plot
the_titles = {'Bias', 'Std', 'MedBias', 'IQR'}; % Plot titles/file names
if loss_quant == 0.5
remark_loss_quant = ''; % remark in file name for quantile loss
else
remark_loss_quant = strcat('_p', num2str(round(loss_quant*100)));
end
the_methods_index = cellfun(@(x) find(strcmp(res.settings.est.methods_name, x)), methods_fields{ne}); % index of each method
for j=1:length(the_objects)
the_result = sqrt(extract_struct(res.results.(the_objects{j})));
the_result = the_result(:,:,the_methods_index);
the_ranks = permute(tiedrank(permute(the_result, [3 1 2])), [2 3 1]); % Rank procedures from lowest to highest (break ties by averaging)
% normalized losses
plot_loss(horzs-1, squeeze(quantile(the_result./the_rms_irf, loss_quant, 2)), [], ...
strjoin({exper_plotname, ': Relative', the_titles{j}}), methods_names_plot, font_size);
plot_save(fullfile(output_folder, strcat(exper_names{ne}, '_loss_', lower(the_titles{j}), '_reltruth', remark_loss_quant)), output_suffix);
% loss function ranks
plot_loss(horzs-1, squeeze(mean(the_ranks, 2)), [], ...
strjoin({exper_plotname, ': Average rank of', the_titles{j}}), methods_names_plot, font_size);
plot_save(fullfile(output_folder, strcat(exper_names{ne}, '_loss_', lower(the_titles{j}), '_avgrank')), output_suffix);
% regression on variable category counts
if reg_cat==1
reg_cat_Y = log(reshape(the_result./the_rms_irf,res.settings.est.IRF_hor*res.settings.specifications.n_spec,[])); % log loss
reg_beta = reg_cat_X(reg_sel,:)\reg_cat_Y(reg_sel,:); % OLS regression of log loss on category and horizon variables
the_tab = array2table(reg_beta);
the_tab.Properties.VariableNames = res.settings.est.methods_name(the_methods_index);
the_tab_var = table;
the_tab_var.VARIABLE = reg_cat_vars;
writetable([the_tab_var the_tab],fullfile(output_folder, strcat(exper_names{ne}, '_loss_', lower(the_titles{j}), '_regcat', '.csv'))); % write table to file
end
end
end
end
end