-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdetect.py
207 lines (183 loc) · 6.74 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
"""
Listen on UDP for audio from Rhasspy, detect wake words using Open Wake Word,
and publish on MQTT when wake word is detected to trigger Rhasspy speech-to-text.
"""
import argparse
import io
import queue
import socket
import threading
import time
import wave
from collections import deque
from json import dumps
import numpy as np
import paho.mqtt.client
import yaml
from openwakeword.model import Model
RHASSPY_BYTES = 2092
RHASSPY_FRAMES = 1024
OWW_FRAMES = 1280 # 80 ms window @ 16 kHz = 1280 frames
parser = argparse.ArgumentParser(description="Open Wake Word detection for Rhasspy")
parser.add_argument(
"-c",
"--config",
default="config.yaml",
help="Configuration yaml file, defaults to `config.yaml`",
dest="config_file",
)
args = parser.parse_args()
def load_config(config_file):
"""Use config.yaml to override the default configuration."""
try:
with open(config_file, "r") as f:
config_override = yaml.safe_load(f)
except FileNotFoundError:
config_override = {}
default_config = {
"mqtt": {
"broker": "127.0.0.1",
"port": 1883,
"username": None,
"password": None,
},
"oww": {
"model_names": ["alexa", "hey_mycroft", "hey_jarvis", "timer", "weather"],
"activation_threshold": 0.7,
"deactivation_threshold": 0.2,
"activation_samples": 3,
"vad_threshold": 0,
"enable_speex_noise_suppression": False,
},
"udp_ports": {"base": 12202},
}
config = {**default_config, **config_override}
if not config["udp_ports"]:
print(
"No UDP ports configured. Configure UDP ports to receive audio for wakeword detection."
)
exit()
return config
class RhasspyUdpAudio(threading.Thread):
"""Get audio from UDP stream and add to wake word detection queue."""
def __init__(self, roomname, port, queue):
threading.Thread.__init__(self)
self.roomname = roomname
self.port = port
self.queue = queue
self.buffer = []
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.sock.bind(("", port))
def run(self):
"""Thread to receive UDP audio and add to processing queue."""
print(f"Listening for {self.roomname} audio on UDP port {self.port}")
while True:
data, addr = self.sock.recvfrom(RHASSPY_BYTES)
audio = wave.open(io.BytesIO(data))
frames = audio.readframes(RHASSPY_FRAMES)
self.buffer.extend(np.frombuffer(frames, dtype=np.int16))
if len(self.buffer) > OWW_FRAMES:
self.queue.put(
(
self.roomname,
time.time(),
np.asarray(self.buffer[:OWW_FRAMES], dtype=np.int16),
)
)
self.buffer = self.buffer[OWW_FRAMES:]
class Prediction(threading.Thread):
"""Process wake word detection queue and publishing MQTT message when a wake word is detected."""
def __init__(self, queue):
threading.Thread.__init__(self)
self.queue = queue
self.filters = {}
self.mqtt = paho.mqtt.client.Client()
self.mqtt.username_pw_set(
config["mqtt"]["username"], config["mqtt"]["password"]
)
self.mqtt.connect(config["mqtt"]["broker"], config["mqtt"]["port"], 60)
self.mqtt.loop_start()
print("MQTT: Connected to broker")
self.oww = Model(
# wakeword_model_names=["hey_mycroft", "dog"],
vad_threshold=config["oww"]["vad_threshold"],
enable_speex_noise_suppression=config["oww"][
"enable_speex_noise_suppression"
],
)
def run(self):
"""
Wake word detection thread.
Detect and filter all wake-words, but only publish to MQTT if wake-word model name is listed
in config.yaml.
"""
while True:
roomname, timestamp, audio = self.queue.get()
prediction = self.oww.predict(audio)
for wakeword in prediction.keys():
confidence = prediction[wakeword]
if (
self.__filter(wakeword, confidence)
and wakeword in config["oww"]["model_names"]
):
self.__publish(wakeword, roomname)
def __filter(self, wakeword, confidence):
"""
Filter so that a wakeword is only triggered once per utterance.
When simple moving average (of length `activation_samples`) crosses the `activation_threshold`
for the first time, then trigger Rhasspy. Only "re-arm" the wakeword when the moving average
drops below the `deactivation_threshold`.
"""
try:
self.filters[wakeword]["samples"].append(confidence)
except KeyError:
self.filters[wakeword] = {
"samples": deque(
[confidence], maxlen=config["oww"]["activation_samples"]
),
"active": False,
}
moving_average = np.average(self.filters[wakeword]["samples"])
activated = False
if (
not self.filters[wakeword]["active"]
and moving_average >= config["oww"]["activation_threshold"]
):
self.filters[wakeword]["active"] = True
activated = True
elif (
self.filters[wakeword]["active"]
and moving_average < config["oww"]["deactivation_threshold"]
):
self.filters[wakeword]["active"] = False
if moving_average > 0.1:
print(f"{wakeword:<16} {activated!s:<8} {self.filters[wakeword]}")
return activated
def __publish(self, wakeword, roomname):
"""Publish wake word message to Rhasspy Hermes/MQTT."""
payload = {
"modelId": wakeword,
"modelVersion": "",
"modelType": "universal",
"currentSensitivity": config["oww"]["activation_threshold"],
"siteId": roomname,
"sessionId": None,
"sendAudioCaptured": None,
"lang": None,
"customEntities": None,
}
self.mqtt.publish(f"hermes/hotword/{wakeword}/detected", dumps(payload))
print(f"MQTT: Published wakeword {wakeword}, siteId {roomname} to Rhasspy")
if __name__ == "__main__":
config = load_config(args.config_file)
q = queue.Queue()
threads = []
for roomname, port in config["udp_ports"].items():
t = RhasspyUdpAudio(roomname, port, q)
t.daemon = True
t.start()
threads.append(t)
t = Prediction(q)
t.start()
threads.append(t)
print(f"Threads: {threads}")