-
Notifications
You must be signed in to change notification settings - Fork 23
/
resnet_split.py
327 lines (282 loc) · 15.7 KB
/
resnet_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
from collections import namedtuple
import tensorflow as tf
import numpy as np
import utils
HParams = namedtuple('HParams',
'batch_size, num_classes, num_residual_units, k, weight_decay, momentum, finetune, '
'ngroups1, ngroups2, ngroups3, split_params')
class ResNet(object):
def __init__(self, hp, images, labels, global_step, name=None, reuse_weights=False):
self._hp = hp # Hyperparameters
self._images = images # Input image
self._labels = labels # Input labels
self._global_step = global_step
self.lr = tf.placeholder(tf.float32)
self.is_train = tf.placeholder(tf.bool)
self._counted_scope = []
self._flops = 0
self._weights = 0
def build_model(self):
print('Building model')
filters = [16, 16 * self._hp.k, 32 * self._hp.k, 64 * self._hp.k]
strides = [1, 2, 2]
# Init. conv.
print('\tBuilding unit: init_conv')
x = utils._conv(self._images, 3, filters[0], 1, name='init_conv')
# unit_1_x
x = self._residual_block_first(x, filters[1], strides[0], name='unit_1_0')
x = self._residual_block(x, name='unit_1_1')
# unit_2_x
if self._hp.ngroups3 == 1:
x = self._residual_block_first(x, filters[2], strides[1], name='unit_2_0')
x = self._residual_block(x, name='unit_2_1')
else:
unit_2_0_shortcut_kernel = self._hp.split_params['unit_2_0']['shortcut']
unit_2_0_conv1_kernel = self._hp.split_params['unit_2_0']['conv1']
unit_2_0_conv2_kernel = self._hp.split_params['unit_2_0']['conv2']
unit_2_0_p_perms = self._hp.split_params['unit_2_0']['p_perms']
unit_2_0_q_perms = self._hp.split_params['unit_2_0']['q_perms']
unit_2_0_r_perms = self._hp.split_params['unit_2_0']['r_perms']
with tf.variable_scope('unit_2_0'):
shortcut = self._conv_split(x, filters[2], strides[1], unit_2_0_shortcut_kernel, unit_2_0_p_perms, unit_2_0_q_perms, name='shortcut')
x = self._conv_split(x, filters[2], strides[1], unit_2_0_conv1_kernel, unit_2_0_p_perms, unit_2_0_r_perms, name='conv_1')
x = self._bn(x, name='bn_1')
x = self._relu(x, name='relu_1')
x = self._conv_split(x, filters[2], 1, unit_2_0_conv2_kernel, unit_2_0_r_perms, unit_2_0_q_perms, name='conv_2')
x = self._bn(x, name='bn_2')
x = x + shortcut
x = self._relu(x, name='relu_2')
unit_2_1_conv1_kernel = self._hp.split_params['unit_2_1']['conv1']
unit_2_1_conv2_kernel = self._hp.split_params['unit_2_1']['conv2']
unit_2_1_p_perms = self._hp.split_params['unit_2_1']['p_perms']
unit_2_1_r_perms = self._hp.split_params['unit_2_1']['r_perms']
with tf.variable_scope('unit_2_1'):
shortcut = x
x = self._conv_split(x, filters[2], 1, unit_2_1_conv1_kernel, unit_2_1_p_perms, unit_2_1_r_perms, name='conv_1')
x = self._bn(x, name='bn_1')
x = self._relu(x, name='relu_1')
x = self._conv_split(x, filters[2], 1, unit_2_1_conv2_kernel, unit_2_1_r_perms, unit_2_1_p_perms, name='conv_2')
x = self._bn(x, name='bn_2')
x = x + shortcut
x = self._relu(x, name='relu_2')
# unit_3_x
if self._hp.ngroups2 == 1:
x = self._residual_block_first(x, filters[3], strides[2], name='unit_3_0')
x = self._residual_block(x, name='unit_3_1')
else:
unit_3_0_shortcut_kernel = self._hp.split_params['unit_3_0']['shortcut']
unit_3_0_conv1_kernel = self._hp.split_params['unit_3_0']['conv1']
unit_3_0_conv2_kernel = self._hp.split_params['unit_3_0']['conv2']
unit_3_0_p_perms = self._hp.split_params['unit_3_0']['p_perms']
unit_3_0_q_perms = self._hp.split_params['unit_3_0']['q_perms']
unit_3_0_r_perms = self._hp.split_params['unit_3_0']['r_perms']
with tf.variable_scope('unit_3_0'):
shortcut = self._conv_split(x, filters[3], strides[2], unit_3_0_shortcut_kernel, unit_3_0_p_perms, unit_3_0_q_perms, name='shortcut')
x = self._conv_split(x, filters[3], strides[2], unit_3_0_conv1_kernel, unit_3_0_p_perms, unit_3_0_r_perms, name='conv_1')
x = self._bn(x, name='bn_1')
x = self._relu(x, name='relu_1')
x = self._conv_split(x, filters[3], 1, unit_3_0_conv2_kernel, unit_3_0_r_perms, unit_3_0_q_perms, name='conv_2')
x = self._bn(x, name='bn_2')
x = x + shortcut
x = self._relu(x, name='relu_2')
unit_3_1_conv1_kernel = self._hp.split_params['unit_3_1']['conv1']
unit_3_1_conv2_kernel = self._hp.split_params['unit_3_1']['conv2']
unit_3_1_p_perms = self._hp.split_params['unit_3_1']['p_perms']
unit_3_1_r_perms = self._hp.split_params['unit_3_1']['r_perms']
with tf.variable_scope('unit_3_1'):
shortcut = x
x = self._conv_split(x, filters[3], 1, unit_3_1_conv1_kernel, unit_3_1_p_perms, unit_3_1_r_perms, name='conv_1')
x = self._bn(x, name='bn_1')
x = self._relu(x, name='relu_1')
x = self._conv_split(x, filters[3], 1, unit_3_1_conv2_kernel, unit_3_1_r_perms, unit_3_1_p_perms, name='conv_2')
x = self._bn(x, name='bn_2')
x = x + shortcut
x = self._relu(x, name='relu_2')
# Last unit
with tf.variable_scope('unit_last') as scope:
print('\tBuilding unit: %s' % scope.name)
x = utils._bn(x, self.is_train, self._global_step)
x = utils._relu(x)
x = tf.reduce_mean(x, [1, 2])
# Logit
logits_weights = self._hp.split_params['logits']['weights']
logits_biases = self._hp.split_params['logits']['biases']
logits_input_perms = self._hp.split_params['logits']['input_perms']
logits_output_perms = self._hp.split_params['logits']['output_perms']
with tf.variable_scope('logits') as scope:
print('\tBuilding unit: %s - %d split' % (scope.name, len(logits_weights)))
x_offset = 0
x_list = []
for i, (w, b, p) in enumerate(zip(logits_weights, logits_biases, logits_input_perms)):
in_dim, out_dim = w.shape
x_split = tf.transpose(tf.gather(tf.transpose(x), p))
x_split = self._fc_with_init(x_split, out_dim, init_w=w, init_b=b, name='split%d' % (i+1))
x_list.append(x_split)
x_offset += in_dim
x = tf.concat(x_list, 1)
output_forward_idx = list(np.concatenate(logits_output_perms))
output_inverse_idx = [output_forward_idx.index(i) for i in range(self._hp.num_classes)]
x = tf.transpose(tf.gather(tf.transpose(x), output_inverse_idx))
self._logits = x
# Probs & preds & acc
self.probs = tf.nn.softmax(x, name='probs')
self.preds = tf.to_int32(tf.argmax(self._logits, 1, name='preds'))
ones = tf.constant(np.ones([self._hp.batch_size]), dtype=tf.float32)
zeros = tf.constant(np.zeros([self._hp.batch_size]), dtype=tf.float32)
correct = tf.where(tf.equal(self.preds, self._labels), ones, zeros)
self.acc = tf.reduce_mean(correct, name='acc')
tf.summary.scalar('accuracy', self.acc)
# Loss & acc
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=x, labels=self._labels)
self.loss = tf.reduce_mean(loss)
tf.summary.scalar('cross_entropy', self.loss)
def build_train_op(self):
print('Building train ops')
# Learning rate
tf.summary.scalar('learing_rate', self.lr)
losses = [self.loss]
# Add l2 loss
with tf.variable_scope('l2_loss'):
costs = [tf.nn.l2_loss(var) for var in tf.get_collection(utils.WEIGHT_DECAY_KEY)]
l2_loss = tf.multiply(self._hp.weight_decay, tf.add_n(costs))
losses.append(l2_loss)
self._total_loss = tf.add_n(losses)
# Gradient descent step
opt = tf.train.MomentumOptimizer(self.lr, self._hp.momentum)
grads_and_vars = opt.compute_gradients(self._total_loss, tf.trainable_variables())
if self._hp.finetune:
for idx, (grad, var) in enumerate(grads_and_vars):
if "group" in var.op.name or \
(("unit_1_0" in var.op.name or "unit_1_1" in var.op.name) and self._hp.ngroups3 > 1) or \
(("unit_2_0" in var.op.name or "unit_2_1" in var.op.name) and self._hp.ngroups2 > 1) or \
("unit_3_0" in var.op.name or "unit_3_1" in var.op.name) or \
"logits" in var.op.name:
print('\tScale up learning rate of % s by 10.0' % var.op.name)
grad = 10.0 * grad
grads_and_vars[idx] = (grad,var)
# Apply gradient
apply_grad_op = opt.apply_gradients(grads_and_vars, global_step=self._global_step)
# Batch normalization moving average update
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if update_ops:
with tf.control_dependencies(update_ops+[apply_grad_op]):
self.train_op = tf.no_op()
else:
self.train_op = apply_grad_op
def _residual_block_first(self, x, out_channel, strides, input_q=None, output_q=None, split_r=None, name="unit"):
in_channel = x.get_shape().as_list()[-1]
with tf.variable_scope(name) as scope:
print('\tBuilding residual unit: %s' % scope.name)
x = self._bn(x, name='bn_1')
x = self._relu(x, name='relu_1')
if input_q is not None and output_q is not None and split_r is not None:
x = self._dropout(x, self._hp.dropout_keep_prob, name='dropout_1')
# Shortcut connection
if in_channel == out_channel:
if strides == 1:
shortcut = tf.identity(x)
else:
shortcut = tf.nn.max_pool(x, [1, strides, strides, 1], [1, strides, strides, 1], 'VALID')
else:
shortcut = self._conv(x, 1, out_channel, strides, input_q=input_q, output_q=output_q, name='shortcut')
# Residual
x = self._conv(x, 3, out_channel, strides, input_q=input_q, output_q=split_r, name='conv_1')
x = self._bn(x, name='bn_2')
x = self._relu(x, name='relu_2')
if input_q is not None and output_q is not None and split_r is not None:
x = self._dropout(x, self._hp.dropout_keep_prob, name='dropout_2')
x = self._conv(x, 3, out_channel, 1, input_q=split_r, output_q=output_q, name='conv_2')
# Merge
x = x + shortcut
return x
def _residual_block(self, x, split_q=None, split_r=None, name="unit"):
num_channel = x.get_shape().as_list()[-1]
with tf.variable_scope(name) as scope:
print('\tBuilding residual unit: %s' % scope.name)
# Shortcut connection
shortcut = x
# Residual
x = self._bn(x, name='bn_1')
x = self._relu(x, name='relu_1')
if split_q is not None and split_r is not None:
x = self._dropout(x, self._hp.dropout_keep_prob, name='dropout_1')
x = self._conv(x, 3, num_channel, 1, input_q=split_q, output_q=split_r, name='conv_1')
x = self._bn(x, name='bn_2')
x = self._relu(x, name='relu_2')
if split_q is not None and split_r is not None:
x = self._dropout(x, self._hp.dropout_keep_prob, name='dropout_2')
x = self._conv(x, 3, num_channel, 1, input_q=split_r, output_q=split_q, name='conv_2')
# Merge
x = x + shortcut
return x
def _conv_split(self, x, out_channel, strides, kernels, input_perms, output_perms, name="unit"):
b, w, h, in_channel = x.get_shape().as_list()
x_list = []
with tf.variable_scope(name) as scope:
print('\tBuilding residual unit: %s - %d split' % (scope.name, len(kernels)))
for i, (k, p) in enumerate(zip(kernels, input_perms)):
kernel_size, in_dim, out_dim = k.shape[-3:]
x_split = tf.transpose(tf.gather(tf.transpose(x, (3, 0, 1, 2)), p), (1, 2, 3, 0))
x_split = self._conv_with_init(x_split, kernel_size, out_dim, strides, init_k=k, name="split%d"%(i+1))
x_list.append(x_split)
x = tf.concat(x_list, 3)
output_forward_idx = list(np.concatenate(output_perms))
output_inverse_idx = [output_forward_idx.index(i) for i in range(out_channel)]
x = tf.transpose(tf.gather(tf.transpose(x, (3, 0, 1, 2)), output_inverse_idx), (1, 2, 3, 0))
return x
# Helper functions(counts FLOPs and number of weights)
def _conv(self, x, filter_size, out_channel, stride, pad="SAME", input_q=None, output_q=None, name="conv"):
b, h, w, in_channel = x.get_shape().as_list()
x = utils._conv(x, filter_size, out_channel, stride, pad, input_q, output_q, name)
f = 2 * (h/stride) * (w/stride) * in_channel * out_channel * filter_size * filter_size
w = in_channel * out_channel * filter_size * filter_size
scope_name = tf.get_variable_scope().name + "/" + name
self._add_flops_weights(scope_name, f, w)
return x
def _conv_with_init(self, x, filter_size, out_channel, stride, pad="SAME", init_k=None, name="conv"):
b, h, w, in_channel = x.get_shape().as_list()
x = utils._conv_with_init(x, filter_size, out_channel, stride, pad, init_k, name)
f = 2 * (h/stride) * (w/stride) * in_channel * out_channel * filter_size * filter_size
w = in_channel * out_channel * filter_size * filter_size
scope_name = tf.get_variable_scope().name + "/" + name
self._add_flops_weights(scope_name, f, w)
return x
def _fc(self, x, out_dim, input_q=None, output_q=None, name="fc"):
b, in_dim = x.get_shape().as_list()
x = utils._fc(x, out_dim, input_q, output_q, name)
f = 2 * (in_dim + 1) * out_dim
w = (in_dim + 1) * out_dim
scope_name = tf.get_variable_scope().name + "/" + name
self._add_flops_weights(scope_name, f, w)
return x
def _fc_with_init(self, x, out_dim, init_w=None, init_b=None, name="fc"):
b, in_dim = x.get_shape().as_list()
x = utils._fc_with_init(x, out_dim, init_w, init_b, name)
f = 2*(in_dim + 1) * out_dim
w = (in_dim + 1) * out_dim
scope_name = tf.get_variable_scope().name + "/" + name
self._add_flops_weights(scope_name, f, w)
return x
def _bn(self, x, name="bn"):
x = utils._bn(x, self.is_train, self._global_step, name)
# f = 8 * self._get_data_size(x)
# w = 4 * x.get_shape().as_list()[-1]
# scope_name = tf.get_variable_scope().name + "/" + name
# self._add_flops_weights(scope_name, f, w)
return x
def _relu(self, x, name="relu"):
x = utils._relu(x, 0.0, name)
# f = self._get_data_size(x)
# scope_name = tf.get_variable_scope().name + "/" + name
# self._add_flops_weights(scope_name, f, 0)
return x
def _dropout(self, x, keep_prob, name="dropout"):
x = utils._dropout(x, keep_prob, name)
return x
def _get_data_size(self, x):
return np.prod(x.get_shape().as_list()[1:])
def _add_flops_weights(self, scope_name, f, w):
if scope_name not in self._counted_scope:
self._flops += f
self._weights += w
self._counted_scope.append(scope_name)