-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmain_hyperparams.py
312 lines (289 loc) · 15.6 KB
/
main_hyperparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#! /usr/bin/env python
import os
import argparse
import datetime
import torch
import torchtext.data as data
from loaddata import loadingdata_Twitter
from loaddata import loadingdata_CV
from loaddata.load_external_word_embedding import Word_Embedding
import train_ALL_CNN
import train_ALL_LSTM
import train_ALL_SRU
from models import model_CNN
from models import model_BiLSTM_1
from models import model_LSTM
from models import model_SRU
from models import model_BiSRU
from models import model_SRU_Formula
import multiprocessing as mu
import shutil
import random
import hyperparams
import time
# solve encoding
from imp import reload
import sys
defaultencoding = 'utf-8'
if sys.getdefaultencoding() != defaultencoding:
reload(sys)
sys.setdefaultencoding(defaultencoding)
# random seed
torch.manual_seed(hyperparams.seed_num)
random.seed(hyperparams.seed_num)
parser = argparse.ArgumentParser(description="sentence classification")
# learning
parser.add_argument('-lr', type=float, default=hyperparams.learning_rate, help='initial learning rate [default: 0.001]')
parser.add_argument('-learning_rate_decay', type=float, default=hyperparams.learning_rate_decay, help='initial learning_rate_decay rate [default: 0.001]')
parser.add_argument('-epochs', type=int, default=hyperparams.epochs, help='number of epochs for train [default: 256]')
parser.add_argument('-batch-size', type=int, default=hyperparams.batch_size, help='batch size for training [default: 64]')
parser.add_argument('-log-interval', type=int, default=hyperparams.log_interval, help='how many steps to wait before logging training status [default: 1]')
parser.add_argument('-test-interval', type=int, default=hyperparams.test_interval, help='how many steps to wait before testing [default: 100]')
parser.add_argument('-save-interval', type=int, default=hyperparams.save_interval, help='how many steps to wait before saving [default:500]')
parser.add_argument('-save-dir', type=str, default=hyperparams.save_dir, help='where to save the snapshot')
# data path
parser.add_argument('-Twitter_path', type=str, default=hyperparams.Twitter_path, help='Twitter data path')
parser.add_argument('-MR_path', type=str, default=hyperparams.MR_path, help='MR data path')
parser.add_argument('-CR_path', type=str, default=hyperparams.CR_path, help='CR data path')
parser.add_argument('-Subj_path', type=str, default=hyperparams.Subj_path, help='Subj data path')
# which data to load
parser.add_argument('-Twitter', action="store_true", default=hyperparams.Twitter, help='load Twitter data')
parser.add_argument('-MR', action="store_true", default=hyperparams.MR, help='load MR data')
parser.add_argument('-CR', action="store_true", default=hyperparams.CR, help='load CR data')
parser.add_argument('-Subj', action="store_true", default=hyperparams.Subj, help='load Subj data')
# shuffle data
parser.add_argument('-shuffle', action='store_true', default=hyperparams.shuffle, help='shuffle the data every epoch' )
parser.add_argument('-epochs_shuffle', action='store_true', default=hyperparams.epochs_shuffle, help='shuffle the data every epoch' )
# use cv
parser.add_argument('-CV', action='store_true', default=hyperparams.CV, help='use cv')
parser.add_argument("-nfold", type=int, default=hyperparams.nfold, help="the cv number")
# task select
parser.add_argument('-TWO_CLASS_TASK', action='store_true', default=hyperparams.TWO_CLASS_TASK, help='whether to execute two-classification-task')
# optim select
parser.add_argument('-Adam', action='store_true', default=hyperparams.Adam, help='whether to select Adam to train')
parser.add_argument('-SGD', action='store_true', default=hyperparams.SGD, help='whether to select SGD to train')
parser.add_argument('-Adadelta', action='store_true', default=hyperparams.Adadelta, help='whether to select Adadelta to train')
# model
parser.add_argument('-rm_model', action='store_true', default=hyperparams.rm_model, help='whether to delete the model after test acc so that to save space')
parser.add_argument('-init_weight', action='store_true', default=hyperparams.init_weight, help='init w')
parser.add_argument('-init_weight_value', type=float, default=hyperparams.init_weight_value, help='value of init w')
parser.add_argument('-init_weight_decay', type=float, default=hyperparams.weight_decay, help='value of init L2 weight_decay')
parser.add_argument('-momentum_value', type=float, default=hyperparams.optim_momentum_value, help='value of momentum in SGD')
parser.add_argument('-init_clip_max_norm', type=float, default=hyperparams.clip_max_norm, help='value of init clip_max_norm')
parser.add_argument('-seed_num', type=float, default=hyperparams.seed_num, help='value of init seed number')
parser.add_argument('-dropout', type=float, default=hyperparams.dropout, help='the probability for dropout [default: 0.5]')
parser.add_argument('-dropout_embed', type=float, default=hyperparams.dropout_embed, help='the probability for dropout [default: 0.5]')
parser.add_argument('-max-norm', type=float, default=hyperparams.max_norm, help='l2 constraint of parameters [default: 3.0]')
parser.add_argument('-embed-dim', type=int, default=hyperparams.embed_dim, help='number of embedding dimension [default: 128]')
parser.add_argument('-kernel-num', type=int, default=hyperparams.kernel_num, help='number of each kind of kernel')
parser.add_argument('-kernel-sizes', type=str, default=hyperparams.kernel_sizes, help='comma-separated kernel size to use for convolution')
parser.add_argument('-static', action='store_true', default=hyperparams.static, help='fix the embedding')
parser.add_argument('-CNN', action='store_true', default=hyperparams.CNN, help='whether to use CNN model')
parser.add_argument('-BiLSTM_1', action='store_true', default=hyperparams.BiLSTM_1, help='whether to use BiLSTM_1 model')
parser.add_argument('-LSTM', action='store_true', default=hyperparams.LSTM, help='whether to use LSTM model')
parser.add_argument('-SRU', action='store_true', default=hyperparams.SRU, help='whether to use SRU model')
parser.add_argument('-BiSRU', action='store_true', default=hyperparams.BiSRU, help='whether to use BiSRU model')
parser.add_argument('-SRU_Formula', action='store_true', default=hyperparams.SRU_Formula, help='whether to use SRU_Formula model')
parser.add_argument('-wide_conv', action='store_true', default=hyperparams.wide_conv, help='whether to use wide conv')
parser.add_argument('-fix_Embedding', action='store_true', default=hyperparams.fix_Embedding, help='whether to fix word embedding during training')
parser.add_argument('-word_Embedding', action='store_true', default=hyperparams.word_Embedding, help='whether to load word embedding')
parser.add_argument('-word_Embedding_Path', type=str, default=hyperparams.word_Embedding_Path, help='filename of model snapshot [default: None]')
parser.add_argument('-lstm-hidden-dim', type=int, default=hyperparams.lstm_hidden_dim, help='the number of embedding dimension in LSTM hidden layer')
parser.add_argument('-lstm-num-layers', type=int, default=hyperparams.lstm_num_layers, help='the number of embedding dimension in LSTM hidden layer')
parser.add_argument('-min_freq', type=int, default=hyperparams.min_freq, help='min freq to include during built the vocab')
# nums of threads
parser.add_argument('-num_threads', type=int, default=hyperparams.num_threads, help='the num of threads')
# device
parser.add_argument('-device', type=int, default=hyperparams.device, help='device to use for iterate data, -1 mean cpu [default: -1]')
parser.add_argument('-no_cuda', action='store_true', default=hyperparams.no_cuda, help='disable the gpu')
# option
args = parser.parse_args()
# load twitter data, no require CV
def load_data_twitter(path,text_field, label_field, **kargs):
train_data, dev_data, test_data = loadingdata_Twitter.Twitter.splits(path, text_field, label_field)
print("len(train_data) {} ".format(len(train_data)))
text_field.build_vocab(train_data.text, min_freq=args.min_freq)
label_field.build_vocab(train_data.label)
train_iter, dev_iter, test_iter = create_Iterator(train_data, dev_data, test_data, batch_size=args.batch_size,
**kargs)
return train_iter, dev_iter, test_iter
# load data that need CV
def load_data(path,text_field, label_field, **kargs):
train_data = loadingdata_CV.MR.splits(path, text_field, label_field)
print("len(train_data) {} ".format(len(train_data)))
text_field.build_vocab(train_data.text, min_freq=args.min_freq)
label_field.build_vocab(train_data.label)
return train_data
# create Iterator
def create_Iterator(train_data, dev_data, test_data, batch_size, **kargs):
train_iter, dev_iter, test_iter = data.Iterator.splits(
(train_data, dev_data, test_data),
batch_sizes=(batch_size, len(dev_data), len(test_data)), **kargs)
# batch_sizes=(batch_size, batch_size, batch_size), **kargs)
return train_iter, dev_iter, test_iter
# cross CV
# def cv_spilit(data, nfold, test_id):
# assert (nfold > 1) and (test_id >= 0) and (test_id < nfold)
# print(data.examples[:5])
# print(data)
# print("cv")
# return None, None, None
#
def cv_spilit_file(path, nfold, test_id):
assert (nfold > 1) and (test_id >= 0) and (test_id < nfold)
print("ddddddddd")
if os.path.exists("./temp_train.txt"):
os.remove("./temp_train.txt")
if os.path.exists("./temp_test.txt"):
os.remove("./temp_test.txt")
file_train = open("./temp_train.txt", "w", encoding="utf-8")
file_test = open("./temp_test.txt", "w", encoding="utf-8")
with open(path, encoding="utf-8") as f:
lines = f.readlines()
for i, line in enumerate(lines):
print(i, line)
file_train.writelines(line) if i % nfold != test_id else file_test.writelines(line)
file_train.close()
file_test.close()
# load data
text_field = data.Field(lower=True)
label_field = data.Field(sequential=False)
print("\nLoading data...")
if args.TWO_CLASS_TASK:
print("Executing 2 Classification Task......")
# which data to load
data_path = None
if args.Twitter is True:
print("loading Twitter data")
data_path = args.Twitter_path
train_iter, dev_iter, test_iter = load_data_twitter(data_path, text_field, label_field, device=args.device,
repeat=False, shuffle=args.epochs_shuffle, sort=False)
else:
print("The dataset require CV, please execute the main_hyperparams_CV.py file")
exit()
'''
# handle external word embedding to file for convenience
from loaddata.handle_wordEmbedding2File import WordEmbedding2File
wordembedding = WordEmbedding2File(wordEmbedding_path="./word2vec/glove.sentiment.conj.pretrained.txt",
vocab=text_field.vocab.itos, k_dim=300)
wordembedding.handle()
'''
# load word2vec
if args.word_Embedding:
word_embedding = Word_Embedding()
if args.embed_dim is not None:
print("word_Embedding_Path {} ".format(args.word_Embedding_Path))
path = args.word_Embedding_Path
print("loading word2vec vectors...")
word_vecs = word_embedding.load_my_vecs(path, text_field.vocab.itos, text_field.vocab.freqs, k=args.embed_dim)
print("word2vec loaded!")
print("num words already in word2vec: " + str(len(word_vecs)))
print("loading unknown word2vec and convert to list...")
print("loading unknown word by avg......")
# word_vecs = add_unknown_words_by_uniform(word_vecs, text_field.vocab.itos, k=args.embed_dim)
word_vecs = word_embedding.add_unknown_words_by_avg(word_vecs, text_field.vocab.itos, k=args.embed_dim)
print("len(word_vecs) {} ".format(len(word_vecs)))
print("unknown word2vec loaded ! and converted to list...")
# update args and print
args.embed_num = len(text_field.vocab)
args.class_num = len(label_field.vocab) - 1
args.cuda = (args.no_cuda) and torch.cuda.is_available(); del args.no_cuda
args.kernel_sizes = [int(k) for k in args.kernel_sizes.split(',')]
# save file
mulu = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
args.mulu = mulu
args.save_dir = os.path.join(args.save_dir, mulu)
if not os.path.isdir(args.save_dir):
os.makedirs(args.save_dir)
# load word2vec
if args.word_Embedding:
args.pretrained_weight = word_vecs
# print parameters
print("\nParameters:")
if os.path.exists("./Parameters.txt"):
os.remove("./Parameters.txt")
file = open("Parameters.txt", "a")
for attr, value in sorted(args.__dict__.items()):
if attr.upper() != "PRETRAINED_WEIGHT" and attr.upper() != "pretrained_weight_static".upper():
print("\t{}={}".format(attr.upper(), value))
file.write("\t{}={}\n".format(attr.upper(), value))
file.close()
shutil.copy("./Parameters.txt", "./snapshot/" + mulu + "/Parameters.txt")
shutil.copy("./hyperparams.py", "./snapshot/" + mulu)
# model
if args.CNN is True:
print("loading CNN model.....")
model = model_CNN.CNN_Text(args)
# save model in this time
shutil.copy("./models/model_CNN.py", "./snapshot/" + mulu)
elif args.BiLSTM_1 is True:
print("loading BiLSTM_1 model.....")
model = model_BiLSTM_1.BiLSTM_1(args)
# save model in this time
shutil.copy("./models/model_BiLSTM_1.py", "./snapshot/" + mulu)
elif args.LSTM is True:
print("loading LSTM model.....")
model = model_LSTM.LSTM(args)
# save model in this time
shutil.copy("./models/model_LSTM.py", "./snapshot/" + mulu)
elif args.SRU is True:
print("loading SRU model.....")
model = model_SRU.SRU(args)
# save model in this time
shutil.copy("./models/model_SRU.py", "./snapshot/" + mulu)
elif args.BiSRU is True:
print("loading BiSRU model.....")
model = model_BiSRU.BiSRU(args)
# save model in this time
shutil.copy("./models/model_BiSRU.py", "./snapshot/" + mulu)
elif args.SRU_Formula is True:
print("loading SRU_Formula model.....")
model = model_SRU_Formula.SRU_Formula(args)
# save model in this time
shutil.copy("./models/model_SRU_Formula.py", "./snapshot/" + mulu)
if args.cuda is True:
print("using cuda......")
model = model.cuda()
print(model)
# train
print("\n cpu_count \n", mu.cpu_count())
torch.set_num_threads(args.num_threads)
if os.path.exists("./Test_Result.txt"):
os.remove("./Test_Result.txt")
# calculate the time of demo
start_time = time.time()
if args.CNN is True:
print("CNN training start......")
model_count = train_ALL_CNN.train(train_iter, dev_iter, test_iter, model, args)
elif args.BiLSTM_1 is True:
print("BiLSTM_1 training start......")
model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, args)
elif args.LSTM is True:
print("LSTM training start......")
model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, args)
elif args.SRU is True:
print("SRU training start......")
model_count = train_ALL_SRU.train(train_iter, dev_iter, test_iter, model, args)
elif args.BiSRU is True:
print("BiSRU training start......")
model_count = train_ALL_SRU.train(train_iter, dev_iter, test_iter, model, args)
elif args.SRU_Formula is True:
print("SRU_Formula training start......")
model_count = train_ALL_SRU.train(train_iter, dev_iter, test_iter, model, args)
print("Model_count", model_count)
# calculate the time of demo
end_time = time.time()
print("The demo Times is : ", end_time - start_time)
resultlist = []
if os.path.exists("./Test_Result.txt"):
file = open("./Test_Result.txt")
for line in file.readlines():
if line[:10] == "Evaluation":
resultlist.append(float(line[34:41]))
result = sorted(resultlist)
file.close()
file = open("./Test_Result.txt", "a")
file.write("\nThe Best Result is : " + str(result[len(result) - 1]))
file.write("\n")
file.close()
shutil.copy("./Test_Result.txt", "./snapshot/" + mulu + "/Test_Result.txt")