-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_helper.c
executable file
·435 lines (421 loc) · 10.3 KB
/
image_helper.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/*
Jonathan Dummer
image helper functions
MIT license
*/
#include "image_helper.h"
#include <stdlib.h>
#include <math.h>
/* Upscaling the image uses simple bilinear interpolation */
int
up_scale_image
(
const unsigned char* const orig,
int width, int height, int channels,
unsigned char* resampled,
int resampled_width, int resampled_height
)
{
float dx, dy;
int x, y, c;
/* error(s) check */
if ( (width < 1) || (height < 1) ||
(resampled_width < 2) || (resampled_height < 2) ||
(channels < 1) ||
(NULL == orig) || (NULL == resampled) )
{
/* signify badness */
return 0;
}
/*
for each given pixel in the new map, find the exact location
from the original map which would contribute to this guy
*/
dx = (width - 1.0f) / (resampled_width - 1.0f);
dy = (height - 1.0f) / (resampled_height - 1.0f);
for ( y = 0; y < resampled_height; ++y )
{
/* find the base y index and fractional offset from that */
float sampley = y * dy;
int inty = (int)sampley;
/* if( inty < 0 ) { inty = 0; } else */
if( inty > height - 2 ) { inty = height - 2; }
sampley -= inty;
for ( x = 0; x < resampled_width; ++x )
{
float samplex = x * dx;
int intx = (int)samplex;
int base_index;
/* find the base x index and fractional offset from that */
/* if( intx < 0 ) { intx = 0; } else */
if( intx > width - 2 ) { intx = width - 2; }
samplex -= intx;
/* base index into the original image */
base_index = (inty * width + intx) * channels;
for ( c = 0; c < channels; ++c )
{
/* do the sampling */
float value = 0.5f;
value += orig[base_index]
*(1.0f-samplex)*(1.0f-sampley);
value += orig[base_index+channels]
*(samplex)*(1.0f-sampley);
value += orig[base_index+width*channels]
*(1.0f-samplex)*(sampley);
value += orig[base_index+width*channels+channels]
*(samplex)*(sampley);
/* move to the next channel */
++base_index;
/* save the new value */
resampled[y*resampled_width*channels+x*channels+c] =
(unsigned char)(value);
}
}
}
/* done */
return 1;
}
int
mipmap_image
(
const unsigned char* const orig,
int width, int height, int channels,
unsigned char* resampled,
int block_size_x, int block_size_y
)
{
int mip_width, mip_height;
int i, j, c;
/* error check */
if( (width < 1) || (height < 1) ||
(channels < 1) || (orig == NULL) ||
(resampled == NULL) ||
(block_size_x < 1) || (block_size_y < 1) )
{
/* nothing to do */
return 0;
}
mip_width = width / block_size_x;
mip_height = height / block_size_y;
if( mip_width < 1 )
{
mip_width = 1;
}
if( mip_height < 1 )
{
mip_height = 1;
}
for( j = 0; j < mip_height; ++j )
{
for( i = 0; i < mip_width; ++i )
{
for( c = 0; c < channels; ++c )
{
const int index = (j*block_size_y)*width*channels + (i*block_size_x)*channels + c;
int sum_value;
int u,v;
int u_block = block_size_x;
int v_block = block_size_y;
int block_area;
/* do a bit of checking so we don't over-run the boundaries
(necessary for non-square textures!) */
if( block_size_x * (i+1) > width )
{
u_block = width - i*block_size_y;
}
if( block_size_y * (j+1) > height )
{
v_block = height - j*block_size_y;
}
block_area = u_block*v_block;
/* for this pixel, see what the average
of all the values in the block are.
note: start the sum at the rounding value, not at 0 */
sum_value = block_area >> 1;
for( v = 0; v < v_block; ++v )
for( u = 0; u < u_block; ++u )
{
sum_value += orig[index + v*width*channels + u*channels];
}
resampled[j*mip_width*channels + i*channels + c] = sum_value / block_area;
}
}
}
return 1;
}
int
scale_image_RGB_to_NTSC_safe
(
unsigned char* orig,
int width, int height, int channels
)
{
const float scale_lo = 16.0f - 0.499f;
const float scale_hi = 235.0f + 0.499f;
int i, j;
int nc = channels;
unsigned char scale_LUT[256];
/* error check */
if( (width < 1) || (height < 1) ||
(channels < 1) || (orig == NULL) )
{
/* nothing to do */
return 0;
}
/* set up the scaling Look Up Table */
for( i = 0; i < 256; ++i )
{
scale_LUT[i] = (unsigned char)((scale_hi - scale_lo) * i / 255.0f + scale_lo);
}
/* for channels = 2 or 4, ignore the alpha component */
nc -= 1 - (channels & 1);
/* OK, go through the image and scale any non-alpha components */
for( i = 0; i < width*height*channels; i += channels )
{
for( j = 0; j < nc; ++j )
{
orig[i+j] = scale_LUT[orig[i+j]];
}
}
return 1;
}
unsigned char clamp_byte( int x ) { return ( (x) < 0 ? (0) : ( (x) > 255 ? 255 : (x) ) ); }
/*
This function takes the RGB components of the image
and converts them into YCoCg. 3 components will be
re-ordered to CoYCg (for optimum DXT1 compression),
while 4 components will be ordered CoCgAY (for DXT5
compression).
*/
int
convert_RGB_to_YCoCg
(
unsigned char* orig,
int width, int height, int channels
)
{
int i;
/* error check */
if( (width < 1) || (height < 1) ||
(channels < 3) || (channels > 4) ||
(orig == NULL) )
{
/* nothing to do */
return -1;
}
/* do the conversion */
if( channels == 3 )
{
for( i = 0; i < width*height*3; i += 3 )
{
int r = orig[i+0];
int g = (orig[i+1] + 1) >> 1;
int b = orig[i+2];
int tmp = (2 + r + b) >> 2;
/* Co */
orig[i+0] = clamp_byte( 128 + ((r - b + 1) >> 1) );
/* Y */
orig[i+1] = clamp_byte( g + tmp );
/* Cg */
orig[i+2] = clamp_byte( 128 + g - tmp );
}
} else
{
for( i = 0; i < width*height*4; i += 4 )
{
int r = orig[i+0];
int g = (orig[i+1] + 1) >> 1;
int b = orig[i+2];
unsigned char a = orig[i+3];
int tmp = (2 + r + b) >> 2;
/* Co */
orig[i+0] = clamp_byte( 128 + ((r - b + 1) >> 1) );
/* Cg */
orig[i+1] = clamp_byte( 128 + g - tmp );
/* Alpha */
orig[i+2] = a;
/* Y */
orig[i+3] = clamp_byte( g + tmp );
}
}
/* done */
return 0;
}
/*
This function takes the YCoCg components of the image
and converts them into RGB. See above.
*/
int
convert_YCoCg_to_RGB
(
unsigned char* orig,
int width, int height, int channels
)
{
int i;
/* error check */
if( (width < 1) || (height < 1) ||
(channels < 3) || (channels > 4) ||
(orig == NULL) )
{
/* nothing to do */
return -1;
}
/* do the conversion */
if( channels == 3 )
{
for( i = 0; i < width*height*3; i += 3 )
{
int co = orig[i+0] - 128;
int y = orig[i+1];
int cg = orig[i+2] - 128;
/* R */
orig[i+0] = clamp_byte( y + co - cg );
/* G */
orig[i+1] = clamp_byte( y + cg );
/* B */
orig[i+2] = clamp_byte( y - co - cg );
}
} else
{
for( i = 0; i < width*height*4; i += 4 )
{
int co = orig[i+0] - 128;
int cg = orig[i+1] - 128;
unsigned char a = orig[i+2];
int y = orig[i+3];
/* R */
orig[i+0] = clamp_byte( y + co - cg );
/* G */
orig[i+1] = clamp_byte( y + cg );
/* B */
orig[i+2] = clamp_byte( y - co - cg );
/* A */
orig[i+3] = a;
}
}
/* done */
return 0;
}
float
find_max_RGBE
(
unsigned char *image,
int width, int height
)
{
float max_val = 0.0f;
unsigned char *img = image;
int i, j;
for( i = width * height; i > 0; --i )
{
/* float scale = powf( 2.0f, img[3] - 128.0f ) / 255.0f; */
float scale = ldexp( 1.0f / 255.0f, (int)(img[3]) - 128 );
for( j = 0; j < 3; ++j )
{
if( img[j] * scale > max_val )
{
max_val = img[j] * scale;
}
}
/* next pixel */
img += 4;
}
return max_val;
}
int
RGBE_to_RGBdivA
(
unsigned char *image,
int width, int height,
int rescale_to_max
)
{
/* local variables */
int i, iv;
unsigned char *img = image;
float scale = 1.0f;
/* error check */
if( (!image) || (width < 1) || (height < 1) )
{
return 0;
}
/* convert (note: no negative numbers, but 0.0 is possible) */
if( rescale_to_max )
{
scale = 255.0f / find_max_RGBE( image, width, height );
}
for( i = width * height; i > 0; --i )
{
/* decode this pixel, and find the max */
float r,g,b,e, m;
/* e = scale * powf( 2.0f, img[3] - 128.0f ) / 255.0f; */
e = scale * ldexp( 1.0f / 255.0f, (int)(img[3]) - 128 );
r = e * img[0];
g = e * img[1];
b = e * img[2];
m = (r > g) ? r : g;
m = (b > m) ? b : m;
/* and encode it into RGBdivA */
iv = (m != 0.0f) ? (int)(255.0f / m) : 1.0f;
iv = (iv < 1) ? 1 : iv;
img[3] = (iv > 255) ? 255 : iv;
iv = (int)(img[3] * r + 0.5f);
img[0] = (iv > 255) ? 255 : iv;
iv = (int)(img[3] * g + 0.5f);
img[1] = (iv > 255) ? 255 : iv;
iv = (int)(img[3] * b + 0.5f);
img[2] = (iv > 255) ? 255 : iv;
/* and on to the next pixel */
img += 4;
}
return 1;
}
int
RGBE_to_RGBdivA2
(
unsigned char *image,
int width, int height,
int rescale_to_max
)
{
/* local variables */
int i, iv;
unsigned char *img = image;
float scale = 1.0f;
/* error check */
if( (!image) || (width < 1) || (height < 1) )
{
return 0;
}
/* convert (note: no negative numbers, but 0.0 is possible) */
if( rescale_to_max )
{
scale = 255.0f * 255.0f / find_max_RGBE( image, width, height );
}
for( i = width * height; i > 0; --i )
{
/* decode this pixel, and find the max */
float r,g,b,e, m;
/* e = scale * powf( 2.0f, img[3] - 128.0f ) / 255.0f; */
e = scale * ldexp( 1.0f / 255.0f, (int)(img[3]) - 128 );
r = e * img[0];
g = e * img[1];
b = e * img[2];
m = (r > g) ? r : g;
m = (b > m) ? b : m;
/* and encode it into RGBdivA */
iv = (m != 0.0f) ? (int)sqrtf( 255.0f * 255.0f / m ) : 1.0f;
iv = (iv < 1) ? 1 : iv;
img[3] = (iv > 255) ? 255 : iv;
iv = (int)(img[3] * img[3] * r / 255.0f + 0.5f);
img[0] = (iv > 255) ? 255 : iv;
iv = (int)(img[3] * img[3] * g / 255.0f + 0.5f);
img[1] = (iv > 255) ? 255 : iv;
iv = (int)(img[3] * img[3] * b / 255.0f + 0.5f);
img[2] = (iv > 255) ? 255 : iv;
/* and on to the next pixel */
img += 4;
}
return 1;
}