-
Notifications
You must be signed in to change notification settings - Fork 0
/
SssDyna.scm
493 lines (343 loc) · 12.6 KB
/
SssDyna.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
;; Sub Set Sum problem
;; Dynamic solution
;; Guile compatible
;; for curly infix notation put in your .guile:
;; (read-enable 'curly-infix)
;; ne marche pas:
;; export GUILE_AUTO_COMPILE=0
;; touch file.scm works if you change included files but not source file.scm
;; (load "SssDyna.scm")
;;(use-modules (guile growable-vector))
;;(use-modules (guile define-guile-3))
;; files below can be retrieved here: https://github.com/damien-mattei/library-FunctProg
;;(include "pair.scm")
(include "number.scm")
(include "first-and-rest.scm")
(use-modules (Scheme+)) ;;(Scheme+Guile))
;;(define L-init '(1 3 4 16 17 64 256 275 723 889 1040 1041 1093 1111 1284 1344 1520 2027 2734 3000 4285 5027))
;;(define t-init 19836)
;; (define L-init '(1 3 4 16 17 24 45 64 197 256 275 323 540 723 889 915 1040 1041 1093 1099 1111 1284 1344 1520 2027 2500 2734 3000 3267 3610 4285 5027))
;; (define t-init 35267)
;; (define ls (length L-init))
;; (define dyna (make-array 0 {ls + 1} {t-init + 1}))
;; {L-init <+ '(1 3 4 16 17 24 45 64 197 256 275 323 540 723 889 915 1040 1041 1093 1099 1111 1284 1344 1520 2027 2500 2734 3000 3267 3610 4285 5027)}
;; {t-init <+ 35267}
;; {ls <+ (length L-init)}
;; {dyna <+ (make-array 0 {ls + 1} {t-init + 1})}
;; {cpt <+ 0} ;;(define cpt 0)
(declare L-init t-init ls dyna cpt)
{L-init <- '(1 3 4 16 17 24 45 64 197 256 275 323 540 723 889 915 1040 1041 1093 1099 1111 1284 1344 1520 2027 2500 2734 3000 3267 3610 4285 5027)}
{t-init <- 35267}
{ls <- (length L-init)}
{dyna <- (make-array 0 {ls + 1} {t-init + 1})}
(define (one-two b)
(if b 1 2))
{cpt <- 0}
;; scheme@(guile-user)> (ssigma-dyna L-init t-init)
;; $2 = #t
;; scheme@(guile-user)> cpt
;; $3 = 147801
(define (ssigma-dyna L t)
{cpt <- {cpt + 1}}
;;(display L) (display " ") (display t) (newline)
(let* [(ls (length L))
(dyn (array-ref dyna ls t))]
;; dyna[ls t] means 0: unknown solution, 1: solution found, 2: no solution
(one?
(if (not (zero? dyn))
dyn
(array-ref-set! dyna ;; set the array but return the variable
(one-two
(if (null? L)
#f
(let [ (c (first L))
(R (rest L)) ]
(cond [ {c = t} #t ] ;; c is the solution
[ {c > t} (ssigma-dyna R t) ] ;; c is to big to be a solution but can be an approximation
;; c < t at this point
;; c is part of the solution or his approximation
;; or c is not part of solution or his approximation
[ else {(ssigma-dyna R {t - c}) or (ssigma-dyna R t)} ] ))))
ls
t )))))
;; scheme@(guile-user)> (ssigma-dyna-local L-init t-init)
;; $1 = #t
;; scheme@(guile-user)> cpt
;; $2 = 147801
;; (define (ssigma-dyna-local L t)
;; {cpt ← {cpt + 1}} ;; cpt is defined at toplevel
;; ;;(display L) (display " ") (display t) (newline)
;; (local [ ls (length L)
;; dyn {dyna[ls t]} ]
;; ;; dyna[ls t] means 0: unknown solution, 1: solution found, 2: no solution
;; (one?
;; (if (not (zero? dyn))
;; dyn
;; ;; set the array but return the variable
;; { dyna[ls t] ← (one-two
;; (if (null? L)
;; #f
;; (local [ c (first L)
;; R (rest L) ]
;; (cond [ {c = t} #t ] ;; c is the solution
;; [ {c > t} (ssigma-dyna-local R t) ] ;; c is to big to be a solution but can be an approximation
;; ;; c < t at this point
;; ;; c is part of the solution or his approximation
;; ;; or c is not part of solution or his approximation
;; [ else {(ssigma-dyna-local R {t - c}) or (ssigma-dyna-local R t)} ] )))) } ))))
;; scheme@(guile-user)> (ssigma-dyna-define-anywhere L-init t-init)
;; $1 = #t
;; scheme@(guile-user)> cpt
;; $2 = 147801
(define (ssigma-dyna-define-anywhere L t)
{cpt <- {cpt + 1}} ;; cpt is defined at toplevel
;;(display L) (display " ") (display t) (newline)
;;(def ls (length L))
;;(def dyn {dyna[ls t]})
{ls <+ (length L)}
{dyn <+ {dyna[ls t]}}
(def c)
(def R)
;; TODO: write this code simplier
;; dyna[ls t] means 0: unknown solution, 1: solution found, 2: no solution
(one?
(if (not (zero? dyn))
dyn
;; set the array but return the variable
{ dyna[ls t] <- (one-two
(if (null? L)
#f
($ ;;(display "assignment") (newline)
{c <- (first L)}
{R <- (rest L)}
(cond [ {c = t} #t ] ;; c is the solution
[ {c > t} (ssigma-dyna-define-anywhere R t) ] ;; c is to big to be a solution but can be an approximation
;; c < t at this point
;; c is part of the solution or his approximation
;; or c is not part of solution or his approximation
[ else {(ssigma-dyna-define-anywhere R {t - c}) or (ssigma-dyna-define-anywhere R t)} ] )))) } )))
;; scheme@(guile-user)> (ssigma-dyna-def L-init t-init)
;; $1 = #t
;; scheme@(guile-user)> cpt
;; $2 = 147801
(define (ssigma-dyna-def L t)
{cpt <- {cpt + 1}} ;; cpt is defined at toplevel
(def (ls dyn)) ;; declare multiple variables
{ls <- (length L)}
{dyn <- {dyna[ls t]}}
;; declare one variable at a time
(def c)
(def R)
;; TODO: write this code simplier
;; dyna[ls t] means 0: unknown solution, 1: solution found, 2: no solution
(one?
(if (not (zero? dyn))
dyn
;; set the array but return the variable
{ dyna[ls t] <- (one-two
(if (null? L)
#f
;; TODO: rename $ which is already used by SRFI-9 record utiliser § ou | (option shift L sur mac)
(§ ;;(display "assignment") (newline)
{c <- (first L)}
{R <- (rest L)}
(cond [ {c = t} #t ] ;; c is the solution
[ {c > t} (ssigma-dyna-def R t) ] ;; c is to big to be a solution but can be an approximation
;; c < t at this point
;; c is part of the solution or his approximation
;; or c is not part of solution or his approximation
[ else {(ssigma-dyna-def R {t - c}) or (ssigma-dyna-def R t)} ] )))) } )))
;; scheme@(guile-user)> (ssigma-proto L-init t-init)
;; = #t
;; scheme@(guile-user)> cpt
;; $2 = 147801
(define (ssigma-proto L t)
(set! cpt {cpt + 1})
(define ls (length L))
(define dyn (array-ref dyna ls t))
;; dyna[ls t] means 0: unknown solution, 1: solution found, 2: no solution
(cond [(not (zero? dyn)) (one? dyn)]
[(null? L) (array-set! dyna 2 ls t) #f] ;; return #f
[else (let [(c (first L))]
(if {c = t} ;; c is the solution
(begin
(array-set! dyna 1 ls t)
#t) ;; return #t
;; else
(let [(R (rest L))]
(if {c > t} ;; continue searching a solution in the rest
(let [(s (ssigma-proto R t))]
(array-set! dyna
(one-two s)
ls t)
s) ;; return s
;; else
;; c < t at this point
;; c is part of the solution or his approximation
;; or c is not part of solution
(let [(s {(ssigma-proto R {t - c}) or (ssigma-proto R t)})]
(array-set! dyna (one-two s)
ls t)
s)))))
] ))
(define (ssigma-proto-condx L t)
(set! cpt {cpt + 1})
(define ls (length L))
(define dyn (array-ref dyna ls t))
(display L) (newline)
(display t) (newline)
;; dyna[ls t] means 0: unknown solution, 1: solution found, 2: no solution
(condx [(not (zero? dyn)) (one? dyn)]
[(null? L) (array-set! dyna 2 ls t) #f] ;; return #f
[exec (define c (first L))]
;; c is the solution
[{c = t} (array-set! dyna 1 ls t) #t] ;; return #t
[exec (define R (rest L))]
;; continue searching a solution in the rest
[{c > t} (define s (ssigma-proto-condx R t))
(array-set! dyna
(one-two s)
ls t)
s] ;; return s
;; else :
;; c < t at this point
;; c is part of the solution or his approximation
;; or c is not part of solution
[else (define s {(ssigma-proto-condx R {t - c}) or (ssigma-proto-condx R t)})
(array-set! dyna (one-two s)
ls t)
s]))
;; (best-sol 100 '(101) '(90 4 3))
;; (101)
(define (best-sol t L1 L2)
;; (display "L1=")
;; (display L1)
;; (newline)
;; (display "L2=")
;; (display L2)
;; (newline)
(let [(s1 (apply + L1))
(s2 (apply + L2))]
(if {(abs {t - s1}) <= (abs {t - s2})}
L1
L2)))
(define (best-sol3 t L1 L2 L3)
;; (display "best-sol3") (newline)
;; (display "t=") (display t) (newline)
;; (display "L1=")
;; (display L1)
;; (newline)
;; (display "L2=")
;; (display L2)
;; (newline)
;; (display "L3=")
;; (display L3)
;; (newline)
(let [(L22 (best-sol t L2 L3))]
(best-sol t L1 L22)))
;; (subset-sum-dyna L-init t-init)
;; #t ;; there exist a solution
(def (subset-sum-dyna L t)
(declare ls dyn) ;; declare multiple variables
{ls <- (length L)}
{dyn <- dyna[ls t]}
;; dyna[ls t] means : 0: unknown solution, 1: solution found, 2: no solution
(if {dyn <> 0} ;; IF or WHEN : it is the same thing here (only one statement)
(return (one? dyn)))
(when (null? L)
{dyna[ls t] <- 2}
(return #f))
{c <+ (first L)}
(when {c = t} ;; c is the solution
{dyna[ls t] <- 1}
(return #t))
{R <+ (rest L)} ;; continue searching a solution in the rest
(declare s)
(if {c > t} ;; c is to big to be a solution
{s <- (subset-sum-dyna R t)}
;; c is part of the solution or c is not part of solution
{s <- {(subset-sum-dyna R {t - c}) or (subset-sum-dyna R t)}})
{dyna[ls t] <- (one-two s)}
s) ;; return boolean value
(def (subset-sum-dynamic L t)
(declare ls dyn c R s) ;; declare multiple variables
{ls <- (length L)}
{dyn <- dyna[ls t]} ;; dyna is a toplevel defined array
;; dyna[ls t] means : 0: unknown solution, 1: solution found, 2: no solution
(if {dyn <> 0} ;; IF or WHEN : it is the same thing here (only one statement)
(return (one? dyn)))
(when (null? L)
{dyna[ls t] <- 2}
(return #f))
{c <- (first L)}
(when {c = t} ;; c is the solution
{dyna[ls t] <- 1}
(return #t))
{R <- (rest L)} ;; continue searching a solution in the rest
(if {c > t} ;; c is to big to be a solution
{s <- (subset-sum-dynamic R t)}
;; c is part of the solution or c is not part of solution
{s <- {(subset-sum-dynamic R {t - c}) or (subset-sum-dynamic R t)}})
{dyna[ls t] <- (one-two s)}
s) ;; return boolean value
(define (subset-sum-condx L t)
(declare ls dyn) ;; declare multiple variables or use <+ instead of <- below
{ls <- (length L)}
{dyn <- dyna[ls t]}
;; dyna[ls t] means 0: unknown solution, 1: solution found, 2: no solution
(condx [{dyn <> 0} (one? dyn)]
[(null? L) {dyna[ls t] <- 2} #f] ;; return #f
[exec {c <+ (first L)}]
;; c is the solution
[{c = t} {dyna[ls t] <- 1} #t] ;; return #t
[exec {R <+ (rest L)}]
;; continue searching a solution in the rest
[{c > t} {s <+ (subset-sum-condx R t)}
{dyna[ls t] <- (one-two s)}
s] ;; return boolean value
;; else : c < t at this point
;; c is part of a solution OR not part of a solution
[else {s <+ {(subset-sum-condx R {t - c}) or (subset-sum-condx R t)}}
{dyna[ls t] <- (one-two s)}
s])) ;; return boolean value
(define (subset-sum-guile L t)
{ls <+ (length L)}
{dyn <+ dyna[ls t]}
{cpt <- {cpt + 1}} ;; cpt has been already defined at toplevel
;; dyna[ls t] means 0: unknown solution, 1: solution found, 2: no solution
(condx [{dyn <> 0} (one? dyn)]
[(null? L) {dyna[ls t] <- 2} #f] ;; return #f
[exec {c <+ (first L)}]
;; c is the solution
[{c = t} {dyna[ls t] <- 1} #t] ;; return #t
[exec {R <+ (rest L)}]
;; continue searching a solution in the rest
[{c > t} {s <+ (subset-sum-guile R t)}
{dyna[ls t] <- (one-two s)}
s] ;; return boolean value
;; else : c < t at this point
;; c is part of a solution OR not part of a solution
[else {s <+ {(subset-sum-guile R {t - c}) or (subset-sum-guile R t)}}
{dyna[ls t] <- (one-two s)}
s])) ;; return boolean value
(define (subset-sum-guile-dec L t)
(declare ls dyn c R s)
{ls <- (length L)}
{dyn <- dyna[ls t]}
{cpt <- {cpt + 1}} ;; cpt has been already defined at toplevel
;; dyna[ls t] means 0: unknown solution, 1: solution found, 2: no solution
(condx [{dyn <> 0} (one? dyn)]
[(null? L) {dyna[ls t] <- 2} #f] ;; return #f
[exec {c <- (first L)}]
;; c is the solution
[{c = t} {dyna[ls t] <- 1} #t] ;; return #t
[exec {R <- (rest L)}]
;; continue searching a solution in the rest
[{c > t} {s <- (subset-sum-guile-dec R t)}
{dyna[ls t] <- (one-two s)}
s] ;; return boolean value
;; else : c < t at this point
;; c is part of a solution OR not part of a solution
[else {s <- {(subset-sum-guile-dec R {t - c}) or (subset-sum-guile-dec R t)}}
{dyna[ls t] <- (one-two s)}
s])) ;; return boolean value