We utilize seven datsets: Google Conceptual Captions (GCC), Stony Brook University Captions (SBU), Visual Genome (VG), COCO Captions (COCO), Flickr 30K Captions (F30K), Visual Question Answering v2 (VQAv2), and Natural Language for Visual Reasoning 2 (NLVR2).
We do not distribute datasets because of the license issue.
Please download the datasets by yourself.
We use pyarrow
to serialize the datasets, conversion scripts are located in vilt/utils/write_*.py
.
Please organize the datasets as follows and run make_arrow
functions to convert the dataset to pyarrow binary file.
https://ai.google.com/research/ConceptualCaptions/download
GCC provides tuples of image url and caption, note that a quite portion of the urls are unaccessible now. Write your own download script and organize the dataset as following structure.
root
├── images_train
│ ├── 0000 # First four letters of image name
│ │ ├── 0000000 # Image Binary
│ │ ├── 0000001
│ │ └── ...
│ ├── 0001
│ │ ├── 0001000
│ │ ├── 0001001
│ │ └── ...
│ └── ...
├── images_val
│ ├── 0000
│ │ └── ...
│ └── ...
├── train_annot.json # List of (image_file_path, caption) tuple
└── val_annot.json # List of (image_file_path, caption) tuple
from vilt.utils.write_conceptual_caption import make_arrow
make_arrow(root, arrows_root)
http://www.cs.virginia.edu/~vicente/sbucaptions/
Similar to GCC, SBU also provides tuples of image url and caption, and also a quite portion of the urls are unaccessible now. Write your own download script and organize the dataset as following structure.
root
├── images_train
│ ├── 0000 # First four letters of image name
│ │ ├── 0000000 # Image Binary
│ │ ├── 0000001
│ │ └── ...
│ ├── 0001
│ │ ├── 0001000
│ │ ├── 0001001
│ │ └── ...
│ └── ...
└── annot.json # List of (image_file_path, caption) tuple
from vilt.utils.write_sbu import make_arrow
make_arrow(root, arrows_root)
http://visualgenome.org/api/v0/api_home.html
Download image part1, image part2 and region descriptions
root
├── images
│ ├── VG_100K
│ │ ├── 10.jpg
│ │ ├── 107899.jpg
│ │ └── ...
│ ├── VG_100K_2
│ │ ├── 1.jpg
│ │ ├── 100.jpg
│ │ └── ...
│ └── ...
└── annotations
└── region_descriptions.json
from vilt.utils.write_vg import make_arrow
make_arrow(root, arrows_root)
https://cocodataset.org/#download
Download 2014 train images, 2014 val images and karpathy split
root
├── train2014
│ ├── COCO_train2014_000000000009.jpg
| └── ...
├── val2014
| ├── COCO_val2014_000000000042.jpg
| └── ...
└── karpathy
└── dataset_coco.json
from vilt.utils.write_coco_karpathy import make_arrow
make_arrow(root, arrows_root)
http://bryanplummer.com/Flickr30kEntities/
Sign flickr images request form and download karpathy split
root
├── flickr30k-images
│ ├── 1000092795.jpg
| └── ...
└── karpathy
└── dataset_flickr30k.json
from vilt.utils.write_f30k_karpathy import make_arrow
make_arrow(root, arrows_root)
https://visualqa.org/download.html
Download COCO 2014 train images, 2014 val images, 2015 test images, annotations (train, val), and questions (train, val, test)
root
├── train2014
│ ├── COCO_train2014_000000000009.jpg
| └── ...
├── val2014
| ├── COCO_val2014_000000000042.jpg
| └── ...
├── test2015
| ├── COCO_test2015_000000000001.jpg
| └── ...
├── v2_OpenEnded_mscoco_train2014_questions.json
├── v2_OpenEnded_mscoco_val2014_questions.json
├── v2_OpenEnded_mscoco_test2015_questions.json
├── v2_OpenEnded_mscoco_test-dev2015_questions.json
├── v2_mscoco_train2014_annotations.json
└── v2_mscoco_val2014_annotations.json
from vilt.utils.write_vqa import make_arrow
make_arrow(root, arrows_root)
Clone the repository and sign the request form to download the images.
root
├── images/train
│ ├── 0
│ │ ├── train-10108-0-img0.png
│ │ └── ...
│ ├── 1
│ │ ├── train-10056-0-img0.png
│ │ └── ...
│ └── ...
├── dev
│ ├── dev-0-0-img0.png
| └── ...
├── test1
│ ├── test1-0-0-img0.png
| └── ...
├── nlvr
├── nlvr2
└── README.md
from vilt.utils.write_nlvr2 import make_arrow
make_arrow(root, arrows_root)