forked from yss9701/Ultra96-Yolov4-tiny-and-Yolo-Fastest
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_dr_txt.py
132 lines (110 loc) · 5.35 KB
/
get_dr_txt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#----------------------------------------------------#
# 获取测试集的detection-result和images-optional
# 具体视频教程可查看
# https://www.bilibili.com/video/BV1zE411u7Vw
#----------------------------------------------------#
from yolo import YOLO
import os
import numpy as np
import copy
import colorsys
import tensorflow as tf
from timeit import default_timer as timer
from tensorflow.keras import backend as K
from tensorflow.keras.models import load_model
from tensorflow.keras.layers import Input, Lambda
from tensorflow.keras.models import Model
from PIL import Image, ImageFont, ImageDraw
from nets.yolo4_tiny import yolo_body,yolo_eval
from utils.utils import letterbox_image
from tqdm import tqdm
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
class mAP_YOLO(YOLO):
#---------------------------------------------------#
# 获得所有的分类
#---------------------------------------------------#
def generate(self):
self.score = 0.01
self.iou = 0.5
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
# 计算anchor数量
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
# 载入模型,如果原来的模型里已经包括了模型结构则直接载入。
# 否则先构建模型再载入
self.yolo_model = yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes)
self.yolo_model.load_weights(self.model_path,by_name=True)
print('{} model, anchors, and classes loaded.'.format(model_path))
# 画框设置不同的颜色
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
# 打乱颜色
np.random.seed(10101)
np.random.shuffle(self.colors)
np.random.seed(None)
if self.eager:
self.input_image_shape = Input([2,],batch_size=1)
inputs = [*self.yolo_model.output, self.input_image_shape]
outputs = Lambda(yolo_eval, output_shape=(1,), name='yolo_eval',
arguments={'anchors': self.anchors, 'num_classes': len(self.class_names), 'image_shape': self.model_image_size,
'score_threshold': self.score, 'eager': True, 'max_boxes': self.max_boxes})(inputs)
self.yolo_model = Model([self.yolo_model.input, self.input_image_shape], outputs)
else:
self.input_image_shape = K.placeholder(shape=(2, ))
self.boxes, self.scores, self.classes = yolo_eval(self.yolo_model.output, self.anchors,
num_classes, self.input_image_shape, max_boxes=self.max_boxes,
score_threshold=self.score, iou_threshold=self.iou)
#---------------------------------------------------#
# 检测图片
#---------------------------------------------------#
def detect_image(self, image_id, image):
f = open("./input/detection-results/"+image_id+".txt","w")
# 调整图片使其符合输入要求
new_image_size = (self.model_image_size[1],self.model_image_size[0])
boxed_image = letterbox_image(image, new_image_size)
image_data = np.array(boxed_image, dtype='float32')
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
if self.eager:
# 预测结果
input_image_shape = np.expand_dims(np.array([image.size[1], image.size[0]], dtype='float32'), 0)
out_boxes, out_scores, out_classes = self.yolo_model.predict([image_data, input_image_shape])
else:
# 预测结果
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
for i, c in enumerate(out_classes):
predicted_class = self.class_names[int(c)]
score = str(out_scores[i])
top, left, bottom, right = out_boxes[i]
f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom))))
f.close()
return
yolo = mAP_YOLO()
image_ids = open('VOCdevkit/VOC2007/ImageSets/Main/test.txt').read().strip().split()
if not os.path.exists("./input"):
os.makedirs("./input")
if not os.path.exists("./input/detection-results"):
os.makedirs("./input/detection-results")
if not os.path.exists("./input/images-optional"):
os.makedirs("./input/images-optional")
for image_id in tqdm(image_ids):
image_path = "./VOCdevkit/VOC2007/JPEGImages/"+image_id+".jpg"
image = Image.open(image_path)
# 开启后在之后计算mAP可以可视化
# image.save("./input/images-optional/"+image_id+".jpg")
yolo.detect_image(image_id,image)
print("Conversion completed!")