-
Notifications
You must be signed in to change notification settings - Fork 4
/
eval_ginr.py
70 lines (59 loc) · 2.25 KB
/
eval_ginr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
"""
Evaluates a trained model by predicting on one sample from the specified dataset.
Arguments:
- checkpoint: path to a Pytorch Lightning checkpoint file
- idx: integer index of a sample from the dataset to predict and plotting
- mesh: if not None, a path to a mesh file (obj, ply, etc.) on which to plotting the
predicted signal. If None, the signal is plotted as a scatter plotting.
- batch_size: number of points per batch when predicting with the trained model
(higher is better)
Note: requires the --dataset_dir flag to be specified as well.
"""
from argparse import ArgumentParser
import pytorch_lightning as pl
from plotly import graph_objects as go
from src.data.graph_dataset import GraphDataset
from src.models.graph_inr import GraphINR
from src.plotting import traces
from src.plotting.figures import PLOT_CONFIGS, draw_mesh
from src.utils.data_generation import load_mesh
from src.utils.get_predictions import get_batched_predictions
pl.seed_everything(1234)
parser = ArgumentParser()
parser.add_argument("checkpoint", type=str)
parser.add_argument("--idx", default=0, type=int)
parser.add_argument("--mesh", default=None, type=str)
parser.add_argument("--key", type=str, default="bunny")
parser.add_argument("--batch_size", default=1000000, type=int)
parser = pl.Trainer.add_argparse_args(parser)
parser = GraphINR.add_model_specific_args(parser)
parser = GraphDataset.add_dataset_specific_args(parser)
args = parser.parse_args()
assert args.key in [
"bunny",
"protein_1AA7_A",
], '--key must be in ["bunny", "protein_1AA7_A"]'
# Model
model = GraphINR.load_from_checkpoint(args.checkpoint)
# Data
dataset = GraphDataset(**vars(args))
points = dataset.npzs[0]["points"]
inputs = dataset.get_inputs(0)
# Predict
_, pred = get_batched_predictions(model, inputs, 0, batch_size=args.batch_size)
if args.mesh is not None:
mesh = load_mesh(args.mesh)
key = args.key
rot = PLOT_CONFIGS[key]["rot"]
fig = draw_mesh(
mesh,
intensity=pred,
rot=rot,
colorscale=PLOT_CONFIGS[key]["colorscale"],
lower_camera=PLOT_CONFIGS[key]["lower_camera"],
)
fig.show()
fig.write_html(f"{args.key}.html")
else:
fig = go.Figure(traces.scatter_3d(points, pred))
fig.show()