-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_sbm.py
143 lines (123 loc) · 4.63 KB
/
train_sbm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import itertools
import os
from argparse import ArgumentParser
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
import pytorch_lightning as pl
import scipy.sparse as sp
import torch
from pytorch_lightning.callbacks import (EarlyStopping, LearningRateMonitor,
ModelCheckpoint)
from pytorch_lightning.loggers import WandbLogger
from sklearn.metrics import accuracy_score, normalized_mutual_info_score
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from src.models.graph_inr import GraphINR
from src.utils.data_generation import normalized_laplacian
from src.utils.eigenvectors import align_eigenvectors_kl
from src.utils.get_predictions import get_batched_predictions
def make_dataset(groups, inter=0.1, intra=0.5, n_per_group=500, k=100):
sizes = [n_per_group] * groups
ids = [[i] * s for i, s in enumerate(sizes)]
ids = np.array([i for g in ids for i in g])
p = (np.ones((groups, groups)) - np.eye(groups)) * inter
p += np.eye(groups) * intra
g = nx.stochastic_block_model(sizes, p)
a = nx.adjacency_matrix(g)
a = a.astype("f4")
l = normalized_laplacian(a)
v, u = sp.linalg.eigsh(l, k=k, which="SM")
return u, ids
pl.seed_everything(1234)
parser = ArgumentParser()
parser.add_argument("--patience", default=5000, type=int)
parser.add_argument("--n_workers", default=0, type=int)
parser.add_argument("--n_fourier", default=100, type=int)
parser.add_argument("--groups", default=2, type=int)
parser.add_argument("--inter", default=0.1, type=float)
parser.add_argument("--intra", default=0.5, type=float)
parser = pl.Trainer.add_argparse_args(parser)
parser = GraphINR.add_model_specific_args(parser)
args = parser.parse_args()
# Data
n_per_group = 500
u, y = make_dataset(
args.groups,
inter=args.inter,
intra=args.intra,
k=args.n_fourier,
n_per_group=n_per_group,
)
u, y = torch.from_numpy(u), torch.from_numpy(y)
class CustomDataset(Dataset):
def __getitem__(self, item):
return {"inputs": u, "target": y, "index": 0}
def __len__(self):
return 1
dataset = CustomDataset()
loader = DataLoader(dataset, batch_size=1, shuffle=True, num_workers=args.n_workers)
# Model
input_dim = args.n_fourier
output_dim = args.groups
model = GraphINR(input_dim, output_dim, len(dataset), classifier=True, **vars(args))
# Training
checkpoint_cb = ModelCheckpoint(
monitor="loss", mode="min", save_last=True, filename="best"
)
earlystopping_cb = EarlyStopping(monitor="loss", patience=args.patience)
lrmonitor_cb = LearningRateMonitor(logging_interval="step")
logger = WandbLogger(project="GINR", save_dir="lightning_logs")
logger.experiment.log(
{"CUDA_VISIBLE_DEVICES": os.environ.get("CUDA_VISIBLE_DEVICES", None)}
)
trainer = pl.Trainer.from_argparse_args(
args,
log_every_n_steps=1,
callbacks=[checkpoint_cb, earlystopping_cb, lrmonitor_cb],
logger=logger,
gpus=torch.cuda.device_count(),
strategy="ddp" if torch.cuda.device_count() > 1 else None,
)
trainer.fit(model, loader)
model.load_from_checkpoint(checkpoint_cb.best_model_path)
# Test on different graphs
inter_range = np.linspace(0.1, 1.0, 100)
intra_range = np.linspace(1.0, 0.1, 100)
scores = []
repetitions = 1
for i, (inter, intra) in enumerate(tqdm(itertools.product(inter_range, intra_range))):
nmi = acc = 0
for _ in range(repetitions):
u_test, y_test = make_dataset(
args.groups, inter=inter, intra=intra, k=args.n_fourier
)
u_test = align_eigenvectors_kl(u.numpy(), u_test)
u_test = torch.from_numpy(u_test)
_, pred = get_batched_predictions(model, u_test, 0)
pred = pred.argmax(-1)
nmi += normalized_mutual_info_score(y_test, pred)
acc += accuracy_score(y_test, pred)
scores.append([inter, intra, nmi / repetitions, acc / repetitions])
# Plot results
scores = np.array(scores).reshape(inter_range.shape[0], intra_range.shape[0], -1)
np.save("plots/sbm_scores.npy", scores)
plt.figure(figsize=(3.3, 3.3))
plt.pcolormesh(
scores[..., 0], scores[..., 1], scores[..., 2], cmap="RdBu", rasterized=True
)
plt.gca().set_aspect("equal")
n = n_per_group * 2
threshold = (np.log(n) / n) * ((np.sqrt(2) + np.sqrt(inter_range * n / np.log(n))) ** 2)
mask = threshold <= 1
plt.plot(inter_range[mask], threshold[mask], color="C1")
plt.ylabel("$r$ (intra)")
plt.xlabel("$p$ (inter)")
for tick in plt.gca().xaxis.get_major_ticks():
tick.label.set_rotation(45)
tick.set_pad(0)
plt.colorbar(fraction=0.04575, pad=0.04)
plt.scatter(0.1, 0.5, marker="x", color="C1", clip_on=False)
plt.tight_layout()
plt.savefig(f"sbm_{args.groups}_groups.pdf", bbox_inches="tight")
plt.show()