-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathonline_prediction.py
65 lines (50 loc) · 2.08 KB
/
online_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import argparse
import numpy as np
from PIL import Image
from primesense import openni2
from skimage.transform import resize
from train_unet3_conv import get_conv
img_rows = 96
img_cols = 128
if __name__ == '__main__':
p = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, description="")
p.add_argument('--v', dest='video_path', action='store', default='', help='path Video')
args = p.parse_args()
model = get_conv()
bit = 16
model.load_weights('weights_conv_16.h5')
dev = openni2.Device
try:
openni2.initialize()
dev = openni2.Device.open_file(args.video_path.encode('utf-8'))
print(dev.get_sensor_info(openni2.SENSOR_DEPTH))
except (RuntimeError, TypeError, NameError):
print(RuntimeError, TypeError, NameError)
pbs = openni2.PlaybackSupport(dev)
depth_stream = pbs.device.create_depth_stream()
pbs.set_repeat_enabled(True)
pbs.set_speed(-1.0)
depth_stream.start()
n_frames = pbs.get_number_of_frames(depth_stream)
for i in range(0, n_frames - 1):
frame_depth = depth_stream.read_frame()
print("Depth {0} of {1} - {2}".format(i, n_frames, frame_depth.frameIndex))
frame_depth_data = frame_depth.get_buffer_as_uint16()
depth_array = np.ndarray((frame_depth.height, frame_depth.width),
dtype=np.uint16,
buffer=frame_depth_data)
depth_array = resize(depth_array, (img_rows, img_cols), preserve_range=True)
imgs = np.array([depth_array], dtype=np.uint16)
imgs = imgs[..., np.newaxis]
imgs = imgs.astype('float32')
mean = np.mean(imgs)
std = np.std(imgs)
imgs -= mean
imgs /= std
np.ndarray((imgs.shape[0], img_rows, img_cols), dtype=np.uint16)
predicted_image = model.predict(imgs, verbose=0)
image = (predicted_image[0][:, :, 0] * 255.).astype(np.uint8)
img = Image.fromarray(image)
img.save("./predicted_images/" + str(i).zfill(4) + ".png")
depth_stream.stop()
openni2.unload()